




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
CHAPTER-6
SamplingerrorandconfidenceintervalsCHAPTER-6
SamplingerrorandcpopulationsamplestatisticParametererrorpopulationsamplestatisticParamSection1samplingerrorofmeanSection2tdistributionSection3confidenceintervalsforthepopulationmeanSection1samplingerrorofSection1
samplingerrorofmean
Section1
samplingerroroAsimplerandomsampleisasampleofsizendrawnfromapopulationofsizeNinsuchawaythateverypossiblerandomsamplesnhasthesameprobabilityofbeingselected.Variabilityamongthesimplerandomsamplesdrawnfromthesamepopulationiscalledsamplingvariability,andtheprobabilitydistributionthatcharacterizessomeaspectofthesamplingvariability,usuallythemeanbutnotalways,iscalledasamplingdistribution.Thesesamplingdistributionsallowustomakeobjectivestatementsaboutpopulationparameterswithoutmeasuringeveryobjectinthepopulation.Asimplerandomsampleisa[Example1]ThepopulationmeanofDBPintheChineseadultmenis72mmHgwithstandarddeviation5mmHg.10adultparticipantswaschosenrandomlyfromtheChineseadultmen,herewecancalculatethesamplemeanandsamplestandarddeviation.Supposingsampling100times,what’stheresult?[Example1]linkageNlinkageNIfrandomsamplesarerepeatedlydrawnfromapopulationwithameanμandstandarddeviationσ,wecanfind:1thesamplemeansaredifferentfromtheothers2Thesamplemeanarenotnecessaryequaltopopulationmeanμ3ThedistributionofsamplemeanissymmetricaboutμHOWTOEXPLORETHESAMPLINGDISTRIBUTIONFORTHEMEAN?IfrandomsamplesarerepeaThedifferencebetweensamplestatisticsandpopulationparameterorthedifferenceamongsamplestatisticsarecalledsamplingerror.ThedifferencebetweensamplInreallifewesampleonlyonce,butwerealizethatoursamplecomesfromatheoreticalsamplingdistributionofallpossiblesamplesofaparticularsize.Thesamplingdistributionconceptprovidesalinkbetweensamplingvariabilityandprobability.Choosingarandomsampleisachanceoperationandgeneratingthesamplingdistributionconsistsofmanyrepetitionsofthischanceoperation.InreallifewesampleonlyonWhensamplingfromanormallydistributedpopulationwithmeanμ,thedistributionofthesamplemeanwillbenormalwithmeanμCentrallimitTheoremWhensamplingfromanormally
=50
=10XPopulationdistributionn=4SamplingdistributionXn=16=50=10XPopulationdistriWhensamplingfromanonnormallydistributedpopulationwithmeanμ,thedistributionofthesamplemeanwillbeapproximatelynormalwithmeanμaslongasnislargerenough(n>50).CentrallimitTheoremWhensamplingfromanonnormalXXStandarderror(SE)canbeusedtoassesssamplingerrorofmean.Althoughsamplingerrorisinevitable,itcanbecalculatedaccurately.Standarderror(SE)canbetheoreticalvalueofSEestimationofSECalculationofstandarderror(SE)s↑→SE↑n↑→SE↓linkagetheoreticalvalueofSEestimatExample5.2Oneanalystchoserandomlyasample(n=100)andmeasuredtheirweightswithameanof72kgandstandarddeviationof15kg.Question:whatisthestandarderror?Example5.2Solution:Solution:
Exercise5.1Considerasampleofmeasurement100withmean121cmandstandarddeviation7cmdrawnfromanormalpopulation.Trytocomputeitsstandarderror.Exercise5.1Solution:Solution:Section2
tdistributionSection2
tdistribution1.Definition
N(μ,
2)N(0,1)1.DefinitionN(μ,2)N(0,RandomsamplingRandomsamplingUsuallystandarddeviationσisunknown,sowecanonlygets,thenwecancalculateUsuallystandarddeviationσiThissamplingdistributionwasdevelopedbyW.SGossettandpublishedunderthepseudonym“student”in1908.itis,therefore,sometimescalledthe“student’stdistributionandisreallyafamilyofdistributionsdependentonthen-1.Thissamplingdistribution
=n-1Zdistributiontdistribution=n-1Zdistributiontdistribu2.thecharacteristicsoftdistributiongraphFIG4thegraphoftdistributionwithdifferentdegreesoffreedom2.thecharacteristicsoftdi1symmetricabout0;2theshapeoftcurveisdeterminedbydegreeoffreedom,df=n-1.3t-distributionisapproximatedtostandardnormaldistributionwhennisinfinite.
1symmetricabout0;總體特征抽樣調查的設計與分析課件tcriticalvaluewithone-sidedprobability→t(α,
)tcriticalvaluewithtwo-sidedprobability→t(α/2,
)tcriticalvaluewithone-sideExample5.2Withn=15,findt0suchthatP(-t0≤t≤
t0)=0.90Example5.2Withn=15,findsolutionFromtvaluetable,df=15-1=14,thetwo-tailedshadedareaequals0.10,so
-t0=-1.761and
t0=1.761solutionFromtvaluetablSection3confidenceintervalsforthepopulationmeanSection3StatisticalmethodsdescriptivestatisticsinferentialstatisticsparameterestimationhypothesistestIntervalsestimationPointestimationStatisticalmethodsdescriptive1.Basicconcepts
Parameterestimation:Deducethepopulationparameterbasingonthesamplestatistics1.BasicconceptsPointEstimateAsingle-valuedestimate.Asingleelementchosenfromasamplingdistribution.Conveyslittleinformationabouttheactualvalueofthepopulationparameterabouttheaccuracyoftheestimate.PointEstimateConfidenceIntervalorIntervalEstimationAnintervalorrangeofvaluesbelievedtoincludetheunknownpopulationparameter.ConfidenceIntervalorIntervaPointestimationLowerlimitUpperlimitIntervalsestimationPointestimationLowerlimitUpp1-aa/2a/21-aa/2a/2
2.MethodsZdistribution1.σ
isknown2.σ
isunknown,n>50
tdistributionσ
isunknown,n≤50CICI2.MethodsZdistribution1.σExample5.3
Ahorticulturalscientistisdevelopinganewvarietyofapple.Oneoftheimportanttraits,inadditiontotaste,color,andstorability,istheuniformityofthefruitsize.Toestimatetheweightshesamples100maturefruitandcalculatesasamplemeanof220gandstandarddeviation5gDevelop95%confidenceintervalsforthepopulationmeanμfromhersampleExample5.3solution95%confidenceintervalsforthepopulationmeanisbetween219.02and220.98gsolution95%confidenceinteExerciseAforesterisinterestedinestimatingtheaveragenumberof‘counttrees’peracre.Arandomsampleofn=64oneacreisselectedandexamined.Theaverage(mean)numberofcounttreesperacreisfoundtobe27.3,withastandarddeviationof12.1.Usethisinformationtoconstruct95%confidenceintervalforμ.Exercisesolution95%confidenceintervalsforthepopulationmeanisbetween24.36and30.24solution95%confidenceinteTheforesteris95%confidentthatthepopulationmeanfor“counttrees”peracreisbetween24.36and30.24Theforesteris95%confidenExample5.4Theecologistsamples25plantsandmeasurestheirheights.Hefindsthatthesamplehasameanof15cmandasampledeviationof4cm.whatisthe95%confidenceintervalforthepopulationmeanμExample5.4solutiondf=25-1=24solutiondf=25-1=24Theplantecologistis95%confidentthatthepopulationmeanforheightsoftheseplantsisbetween13.349and16.65
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電視設備智能生物藥品產業國際企業社會責任與道德規范技術考核試卷
- 物業管理法律咨詢考核試卷
- 染整企業生產安全與事故預防考核試卷
- 海洋環境監測網絡建設與優化考核試卷
- 皮鞋生產中的節能減排措施考核試卷
- 激光加工技術在機電組件制造中的應用考核試卷
- 烏魯木齊職業大學《影視非線性編輯與合成》2023-2024學年第一學期期末試卷
- 江南影視藝術職業學院《中央銀行學英》2023-2024學年第二學期期末試卷
- 吉林農業科技學院《泵與泵站》2023-2024學年第二學期期末試卷
- 上海思博職業技術學院《膠東紅色文化概論》2023-2024學年第一學期期末試卷
- 描寫音樂治愈心靈的英文句子
- (整理)變頻器電力電纜標準
- 《西方音樂史》課件柴可夫斯基
- 人力資源部崗位廉潔風險點及防范措施
- PRS-778S500-100-090721技術使用說明書
- 求一個數比另一個數多幾少幾應用題
- 職業衛生健康題庫
- 2022年本科教學工作合格評估整改工作方案
- 廣東省建設工程造價咨詢服務收費項目和收費標準表[粵價函(2011)742號]
- ERP系統編碼規則0002
- 學校安全工作記錄表
評論
0/150
提交評論