2022年陜西省武功縣重點名校中考數(shù)學考試模擬沖刺卷含解析_第1頁
2022年陜西省武功縣重點名校中考數(shù)學考試模擬沖刺卷含解析_第2頁
2022年陜西省武功縣重點名校中考數(shù)學考試模擬沖刺卷含解析_第3頁
2022年陜西省武功縣重點名校中考數(shù)學考試模擬沖刺卷含解析_第4頁
2022年陜西省武功縣重點名校中考數(shù)學考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩24頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列函數(shù)中,y關(guān)于x的二次函數(shù)是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x22.如圖是由幾個大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上小正方體的個數(shù),則該幾何體的左視圖是()A. B.C. D.3.我國第一艘航母“遼寧艦”最大排水量為67500噸,用科學記數(shù)法表示這個數(shù)字是A.6.75×103噸 B.67.5×103噸 C.6.75×104噸 D.6.75×105噸4.如圖,矩形ABCD中,AB=3,AD=,將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)后得到矩形EBGF,此時恰好四邊形AEHB為菱形,連接CH交FG于點M,則HM=()A. B.1 C. D.5.小強是一位密碼編譯愛好者,在他的密碼手冊中,有這樣一條信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分別對應下列六個字:昌、愛、我、宜、游、美,現(xiàn)將(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,結(jié)果呈現(xiàn)的密碼信息可能是()A.我愛美 B.宜晶游 C.愛我宜昌 D.美我宜昌6.如圖,將四根長度相等的細木條首尾相連,用釘子釘成四邊形,轉(zhuǎn)動這個四邊形,使它形狀改變,當,時,等于()A. B. C. D.7.∠BAC放在正方形網(wǎng)格紙的位置如圖,則tan∠BAC的值為()A. B. C. D.8.已知一次函數(shù)y=kx+b的大致圖象如圖所示,則關(guān)于x的一元二次方程x2﹣2x+kb+1=0的根的情況是()A.有兩個不相等的實數(shù)根 B.沒有實數(shù)根C.有兩個相等的實數(shù)根 D.有一個根是09.下列計算正確的是()A.(﹣2a)2=2a2 B.a(chǎn)6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a(chǎn)?a2=a210.下列各式正確的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣201811.估計5﹣的值應在()A.5和6之間 B.6和7之間 C.7和8之間 D.8和9之間12.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為()A.5 B.6 C.7 D.8二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,這是懷柔區(qū)部分景點的分布圖,若表示百泉山風景區(qū)的點的坐標為,表示慕田峪長城的點的坐標為,則表示雁棲湖的點的坐標為______.14.如圖,在△ABC中,D,E分別是AB,AC邊上的點,DE∥BC.若AD=6,BD=2,DE=3,則BC=______.15.讓我們輕松一下,做一個數(shù)字游戲:第一步:取一個自然數(shù),計算得;第二步:算出的各位數(shù)字之和得,計算得;第三步:算出的各位數(shù)字之和得,再計算得;依此類推,則____________16.-3的倒數(shù)是___________17.在直角坐標系中,坐標軸上到點P(﹣3,﹣4)的距離等于5的點的坐標是.18.如圖,Rt△ABC的直角邊BC在x軸負半軸上,斜邊AC上的中線BD的反向延長線交y軸正半軸于點E,雙曲線y=(x<0)的圖象經(jīng)過點A,S△BEC=8,則k=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)觀察下列多面體,并把下表補充完整.名稱三棱柱四棱柱五棱柱六棱柱圖形頂點數(shù)61012棱數(shù)912面數(shù)58觀察上表中的結(jié)果,你能發(fā)現(xiàn)、、之間有什么關(guān)系嗎?請寫出關(guān)系式.20.(6分)已知:如圖1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點P由點B出發(fā)沿BA方向向點A勻速運動,速度為2cm/s;同時點Q由點A出發(fā)沿AC方向點C勻速運動,速度為lcm/s;連接PQ,設(shè)運動的時間為t秒(0<t<5),解答下列問題:(1)當為t何值時,PQ∥BC;(2)設(shè)△AQP的面積為y(cm2),求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最大值;(3)如圖2,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,是否存在某時刻t,使四邊形PQP'C為菱形?若存在,求出此時t的值;若不存在,請說明理由.21.(6分)某班為了解學生一學期做義工的時間情況,對全班50名學生進行調(diào)查,按做義工的時間(單位:小時),將學生分成五類:類(),類(),類(),類(),類(),繪制成尚不完整的條形統(tǒng)計圖如圖11.根據(jù)以上信息,解答下列問題:類學生有人,補全條形統(tǒng)計圖;類學生人數(shù)占被調(diào)查總?cè)藬?shù)的%;從該班做義工時間在的學生中任選2人,求這2人做義工時間都在中的概率.22.(8分)一輛慢車從甲地勻速行駛至乙地,一輛快車同時從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時間x(小時)的對應關(guān)系如圖所示:(1)甲乙兩地相距千米,慢車速度為千米/小時.(2)求快車速度是多少?(3)求從兩車相遇到快車到達甲地時y與x之間的函數(shù)關(guān)系式.(4)直接寫出兩車相距300千米時的x值.23.(8分)已知關(guān)于的一元二次方程(為實數(shù)且).求證:此方程總有兩個實數(shù)根;如果此方程的兩個實數(shù)根都是整數(shù),求正整數(shù)的值.24.(10分)如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.(1)求該二次函數(shù)的解析式及點M的坐標;(2)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;(3)點P是直線AC上的動點,若點P,點C,點M所構(gòu)成的三角形與△BCD相似,請直接寫出所有點P的坐標(直接寫出結(jié)果,不必寫解答過程).25.(10分)如圖1,已知直線y=kx與拋物線y=交于點A(3,6).(1)求直線y=kx的解析式和線段OA的長度;(2)點P為拋物線第一象限內(nèi)的動點,過點P作直線PM,交x軸于點M(點M、O不重合),交直線OA于點Q,再過點Q作直線PM的垂線,交y軸于點N.試探究:線段QM與線段QN的長度之比是否為定值?如果是,求出這個定值;如果不是,說明理由;(3)如圖2,若點B為拋物線上對稱軸右側(cè)的點,點E在線段OA上(與點O、A不重合),點D(m,0)是x軸正半軸上的動點,且滿足∠BAE=∠BED=∠AOD.繼續(xù)探究:m在什么范圍時,符合條件的E點的個數(shù)分別是1個、2個?26.(12分)如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點A(﹣,2),B(n,﹣1).求直線與雙曲線的解析式.點P在x軸上,如果S△ABP=3,求點P的坐標.27.(12分)如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉(zhuǎn)90°得線段PQ.(1)當點Q落到AD上時,∠PAB=____°,PA=_____,長為_____;(2)當AP⊥BD時,記此時點P為P0,點Q為Q0,移動點P的位置,求∠QQ0D的大小;(3)在點P運動中,當以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;(4)點P在線段BD上,由B向D運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結(jié)果.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

判斷一個函數(shù)是不是二次函數(shù),在關(guān)系式是整式的前提下,如果把關(guān)系式化簡整理(去括號、合并同類項)后,能寫成y=ax2+bx+c(a,b,c為常數(shù),a≠0)的形式,那么這個函數(shù)就是二次函數(shù),否則就不是.【詳解】A.當a=0時,y=ax2+bx+c=bx+c,不是二次函數(shù),故不符合題意;B.y=x(x﹣1)=x2-x,是二次函數(shù),故符合題意;C.的自變量在分母中,不是二次函數(shù),故不符合題意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函數(shù),故不符合題意;故選B.【點睛】本題考查了二次函數(shù)的定義,一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做二次函數(shù),據(jù)此求解即可.2、D【解析】根據(jù)俯視圖中每列正方形的個數(shù),再畫出從正面的,左面看得到的圖形:幾何體的左視圖是:

.故選D.3、C【解析】試題分析:根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).67500一共5位,從而67500=6.75×2.故選C.4、D【解析】

由旋轉(zhuǎn)的性質(zhì)得到AB=BE,根據(jù)菱形的性質(zhì)得到AE=AB,推出△ABE是等邊三角形,得到AB=3,AD=,根據(jù)三角函數(shù)的定義得到∠BAC=30°,求得AC⊥BE,推出C在對角線AH上,得到A,C,H共線,于是得到結(jié)論.【詳解】如圖,連接AC交BE于點O,∵將矩形ABCD繞點B按順時針方向旋轉(zhuǎn)后得到矩形EBGF,∴AB=BE,∵四邊形AEHB為菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等邊三角形,∵AB=3,AD=,∴tan∠CAB=,∴∠BAC=30°,∴AC⊥BE,∴C在對角線AH上,∴A,C,H共線,∴AO=OH=AB=,∵OC=BC=,∵∠COB=∠OBG=∠G=90°,∴四邊形OBGM是矩形,∴OM=BG=BC=,∴HM=OH﹣OM=,故選D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),菱形的性質(zhì),等邊三角形的判定與性質(zhì),解直角三角形的應用等,熟練掌握和靈活運用相關(guān)的知識是解題的關(guān)鍵.5、C【解析】試題分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因為x﹣y,x+y,a+b,a﹣b四個代數(shù)式分別對應愛、我,宜,昌,所以結(jié)果呈現(xiàn)的密碼信息可能是“愛我宜昌”,故答案選C.考點:因式分解.6、B【解析】

首先連接AC,由將四根長度相等的細木條首尾相連,用釘子釘成四邊形ABCD,AB=1,,易得△ABC是等邊三角形,即可得到答案.【詳解】連接AC,

∵將四根長度相等的細木條首尾相連,用釘子釘成四邊形ABCD,

∴AB=BC,

∵,

∴△ABC是等邊三角形,

∴AC=AB=1.

故選:B.【點睛】本題考點:菱形的性質(zhì).7、D【解析】

連接CD,再利用勾股定理分別計算出AD、AC、BD的長,然后再根據(jù)勾股定理逆定理證明∠ADC=90°,再利用三角函數(shù)定義可得答案.【詳解】連接CD,如圖:,CD=,AC=∵,∴∠ADC=90°,∴tan∠BAC==.故選D.【點睛】本題主要考查了勾股定理,勾股定理逆定理,以及銳角三角函數(shù)定義,關(guān)鍵是證明∠ADC=90°.8、A【解析】

判斷根的情況,只要看根的判別式△=b2?4ac的值的符號就可以了.【詳解】∵一次函數(shù)y=kx+b的圖像經(jīng)過第一、三、四象限∴k>0,b<0∴△=b2?4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x2﹣2x+kb+1=0有兩個不等的實數(shù)根,故選A.【點睛】根的判別式9、C【解析】

解:選項A,原式=;選項B,原式=a3;選項C,原式=-2a+2=2-2a;選項D,原式=故選C10、A【解析】

根據(jù)去括號法則、絕對值的性質(zhì)、零指數(shù)冪的計算法則及負整數(shù)指數(shù)冪的計算法則依次計算各項即可解答.【詳解】選項A,﹣(﹣2018)=2018,故選項A正確;選項B,|﹣2018|=2018,故選項B錯誤;選項C,20180=1,故選項C錯誤;選項D,2018﹣1=,故選項D錯誤.故選A.【點睛】本題去括號法則、絕對值的性質(zhì)、零指數(shù)冪的計算法則及負整數(shù)指數(shù)冪的計算法則,熟知去括號法則、絕對值的性質(zhì)、零指數(shù)冪及負整數(shù)指數(shù)冪的計算法則是解決問題的關(guān)鍵.11、C【解析】

先化簡二次根式,合并后,再根據(jù)無理數(shù)的估計解答即可.【詳解】5﹣=,∵49<54<64,∴7<<8,∴5﹣的值應在7和8之間,故選C.【點睛】本題考查了估算無理數(shù)的大小,解決本題的關(guān)鍵是估算出無理數(shù)的大小.12、B【解析】試題分析:連接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是線段BD的垂直平分線,∴CD是斜邊AB的中線,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故選B.考點:作圖—基本作圖;含30度角的直角三角形.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

直接利用已知點坐標得出原點位置,進而得出答案.【詳解】解:如圖所示:雁棲湖的點的坐標為:(1,-3).故答案為(1,-3).【點睛】本題考查坐標確定位置,正確得出原點的位置是解題關(guān)鍵.14、1【解析】

根據(jù)已知DE∥BC得出=進而得出BC的值【詳解】∵DE∥BC,AD=6,BD=2,DE=3,∴△ADE∽△ABC,∴,∴,∴BC=1,故答案為1.【點睛】此題考查了平行線分線段成比例的性質(zhì),解題的關(guān)鍵在于利用三角形的相似求三角形的邊長.15、1【解析】

根據(jù)題意可以分別求得a1,a2,a3,a4,從而可以發(fā)現(xiàn)這組數(shù)據(jù)的特點,三個一循環(huán),從而可以求得a2019的值.【詳解】解:由題意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=1,a4=(1+2+2)2+1=26,…∴2019÷3=673,∴a2019=a3=1,故答案為:1.【點睛】本題考查數(shù)字變化類規(guī)律探索,解題的關(guān)鍵是明確題意,求出前幾個數(shù),觀察數(shù)的變化特點,求出a2019的值.16、【解析】

乘積為1的兩數(shù)互為相反數(shù),即a的倒數(shù)即為,符號一致【詳解】∵-3的倒數(shù)是∴答案是17、(0,0)或(0,﹣8)或(﹣6,0)【解析】

由P(﹣3,﹣4)可知,P到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經(jīng)過原點分別與x軸、y軸交于另外一點,共有三個.【詳解】解:∵P(﹣3,﹣4)到原點距離為5,而以P點為圓心,5為半徑畫圓,圓經(jīng)過原點且分別交x軸、y軸于另外兩點(如圖所示),∴故坐標軸上到P點距離等于5的點有三個:(0,0)或(0,﹣8)或(﹣6,0).故答案是:(0,0)或(0,﹣8)或(﹣6,0).18、1【解析】

∵BD是Rt△ABC斜邊上的中線,∴BD=CD=AD,∴∠DBC=∠ACB,又∠DBC=∠OBE,∠BOE=∠ABC=90°,∴△ABC∽△EOB,∴∴AB?OB=BC?OE,∵S△BEC=×BC?OE=8,∴AB?OB=1,∴k=xy=AB?OB=1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、8,15,18,6,7;【解析】分析:結(jié)合三棱柱、四棱柱和五棱柱的特點,即可填表,根據(jù)已知的面、頂點和棱與n棱柱的關(guān)系,可知n棱柱一定有(n+1)個面,1n個頂點和3n條棱,進而得出答案,利用前面的規(guī)律得出a,b,c之間的關(guān)系.詳解:填表如下:名稱三棱柱四棱柱五棱柱六棱柱圖形頂點數(shù)a681011棱數(shù)b9111518面數(shù)c5678根據(jù)上表中的規(guī)律判斷,若一個棱柱的底面多邊形的邊數(shù)為n,則它有n個側(cè)面,共有n+1個面,共有1n個頂點,共有3n條棱;故a,b,c之間的關(guān)系:a+c-b=1.點睛:此題通過研究幾個棱柱中頂點數(shù)、棱數(shù)、面數(shù)的關(guān)系探索出n棱柱中頂點數(shù)、棱數(shù)、面數(shù)之間的關(guān)系(即歐拉公式),掌握常見棱柱的特征,可以總結(jié)一般規(guī)律:n棱柱有(n+1)個面,1n個頂點和3n條棱是解題關(guān)鍵.20、(1)當t=時,PQ∥BC;(2)﹣(t﹣)2+,當t=時,y有最大值為;(3)存在,當t=時,四邊形PQP′C為菱形【解析】

(1)只要證明△APQ∽△ABC,可得=,構(gòu)建方程即可解決問題;(2)過點P作PD⊥AC于D,則有△APD∽△ABC,理由相似三角形的性質(zhì)構(gòu)建二次函數(shù)即可解決問題;

(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根據(jù)OC=CQ,構(gòu)建方程即可解決問題;【詳解】(1)在Rt△ABC中,AB===10,BP=2t,AQ=t,則AP=10﹣2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得t=,∴當t=時,PQ∥BC.(2)過點P作PD⊥AC于D,則有△APD∽△ABC,∴=,即=,∴PD=6﹣t,∴y=t(6﹣t)=﹣(t﹣)2+,∴當t=時,y有最大值為.(3)存在.理由:連接PP′,交AC于點O.∵四邊形PQP′C為菱形,∴OC=CQ,∵△APO∽△ABC,∴=,即=,∴OA=(5﹣t),∴8﹣(5﹣t)=(8﹣t),解得t=,∴當t=時,四邊形PQP′C為菱形.【點睛】本題考查四邊形綜合題、相似三角形的判定和性質(zhì)、平行線的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造相似三角形解決問題,學會理由參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.21、(1)5;(2)36%;(3).【解析】試題分析:(1)根據(jù):數(shù)據(jù)總數(shù)-已知的小組頻數(shù)=所求的小組頻數(shù),進行求解,然后根據(jù)所求數(shù)據(jù)補全條形圖即可;(2)根據(jù):小組頻數(shù)=,進行求解即可;(3)利用列舉法求概率即可.試題解析:(1)E類:50-2-3-22-18=5(人),故答案為:5;補圖如下:(2)D類:1850×100%=36%,故答案為:36%;(3)設(shè)這5人為有以下10種情況:其中,兩人都在的概率是:.22、(1)10,1;(2)快車速度是2千米/小時;(3)從兩車相遇到快車到達甲地時y與x之間的函數(shù)關(guān)系式為y=150x﹣10;(4)當x=2小時或x=4小時時,兩車相距300千米.【解析】

(1)由當x=0時y=10可得出甲乙兩地間距,再利用速度=兩地間距÷慢車行駛的時間,即可求出慢車的速度;(2)設(shè)快車的速度為a千米/小時,根據(jù)兩地間距=兩車速度之和×相遇時間,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論;(3)分別求出快車到達甲地的時間及快車到達甲地時兩車之間的間距,根據(jù)函數(shù)圖象上點的坐標,利用待定系數(shù)法即可求出該函數(shù)關(guān)系式;(4)利用待定系數(shù)法求出當0≤x≤4時y與x之間的函數(shù)關(guān)系式,將y=300分別代入0≤x≤4時及4≤x≤時的函數(shù)關(guān)系式中求出x值,此題得解.【詳解】解:(1)∵當x=0時,y=10,∴甲乙兩地相距10千米.10÷10=1(千米/小時).故答案為10;1.(2)設(shè)快車的速度為a千米/小時,根據(jù)題意得:4(1+a)=10,解得:a=2.答:快車速度是2千米/小時.(3)快車到達甲地的時間為10÷2=(小時),當x=時,兩車之間的距離為1×=400(千米).設(shè)當4≤x≤時,y與x之間的函數(shù)關(guān)系式為y=kx+b(k≠0),∵該函數(shù)圖象經(jīng)過點(4,0)和(,400),∴,解得:,∴從兩車相遇到快車到達甲地時y與x之間的函數(shù)關(guān)系式為y=150x﹣10.(4)設(shè)當0≤x≤4時,y與x之間的函數(shù)關(guān)系式為y=mx+n(m≠0),∵該函數(shù)圖象經(jīng)過點(0,10)和(4,0),∴,解得:,∴y與x之間的函數(shù)關(guān)系式為y=﹣150x+10.當y=300時,有﹣150x+10=300或150x﹣10=300,解得:x=2或x=4.∴當x=2小時或x=4小時時,兩車相距300千米.【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式、一元一次方程的應用以及一次函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是:(1)利用速度=兩地間距÷慢車行駛的時間,求出慢車的速度;(2)根據(jù)兩地間距=兩車速度之和×相遇時間,列出關(guān)于a的一元一次方程;(3)根據(jù)點的坐標,利用待定系數(shù)法求出函數(shù)關(guān)系式;(4)利用一次函數(shù)圖象上點的坐標特征求出當y=300時x的值.23、(1)證明見解析;(2)或.【解析】

(1)求出△的值,再判斷出其符號即可;(2)先求出x的值,再由方程的兩個實數(shù)根都是整數(shù),且m是正整數(shù)求出m的值即可.【詳解】(1)依題意,得,,.∵,∴方程總有兩個實數(shù)根.(2)∵,∴,.∵方程的兩個實數(shù)根都是整數(shù),且是正整數(shù),∴或.∴或.【點睛】本題考查的是根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac的關(guān)系是解答此題的關(guān)鍵.24、(1)y=﹣x2+2x+4;M(1,5);(2)2<m<4;(3)P1(),P2(),P3(3,1),P4(﹣3,7).【解析】試題分析:(1)將點A、點C的坐標代入函數(shù)解析式,即可求出b、c的值,通過配方法得到點M的坐標;(2)點M是沿著對稱軸直線x=1向下平移的,可先求出直線AC的解析式,將x=1代入求出點M在向下平移時與AC、AB相交時y的值,即可得到m的取值范圍;(3)由題意分析可得∠MCP=90°,則若△PCM與△BCD相似,則要進行分類討論,分成△PCM∽△BDC或△PCM∽△CDB兩種,然后利用邊的對應比值求出點坐標.試題解析:(1)把點A(3,1),點C(0,4)代入二次函數(shù)y=﹣x2+bx+c得,解得∴二次函數(shù)解析式為y=﹣x2+2x+4,配方得y=﹣(x﹣1)2+5,∴點M的坐標為(1,5);(2)設(shè)直線AC解析式為y=kx+b,把點A(3,1),C(0,4)代入得,解得:∴直線AC的解析式為y=﹣x+4,如圖所示,對稱軸直線x=1與△ABC兩邊分別交于點E、點F把x=1代入直線AC解析式y(tǒng)=﹣x+4解得y=3,則點E坐標為(1,3),點F坐標為(1,1)∴1<5﹣m<3,解得2<m<4;(3)連接MC,作MG⊥y軸并延長交AC于點N,則點G坐標為(0,5)∵MG=1,GC=5﹣4=1∴MC==,把y=5代入y=﹣x+4解得x=﹣1,則點N坐標為(﹣1,5),∵NG=GC,GM=GC,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,若點P在AC上,則∠MCP=90°,則點D與點C必為相似三角形對應點①若有△PCM∽△BDC,則有∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45°,若點P在y軸右側(cè),作PH⊥y軸,∵∠PCH=45°,CP=∴PH==把x=代入y=﹣x+4,解得y=,∴P1();同理可得,若點P在y軸左側(cè),則把x=﹣代入y=﹣x+4,解得y=∴P2();②若有△PCM∽△CDB,則有∴CP==3∴PH=3÷=3,若點P在y軸右側(cè),把x=3代入y=﹣x+4,解得y=1;若點P在y軸左側(cè),把x=﹣3代入y=﹣x+4,解得y=7∴P3(3,1);P4(﹣3,7).∴所有符合題意得點P坐標有4個,分別為P1(),P2(),P3(3,1),P4(﹣3,7).考點:二次函數(shù)綜合題25、(1)y=2x,OA=,(2)是一個定值,,(3)當時,E點只有1個,當時,E點有2個。【解析】(1)把點A(3,6)代入y=kx得;∵6=3k,∴k=2,∴y=2x.OA=.(2)是一個定值,理由如下:如答圖1,過點Q作QG⊥y軸于點G,QH⊥x軸于點H.①當QH與QM重合時,顯然QG與QN重合,此時;②當QH與QM不重合時,∵QN⊥QM,QG⊥QH不妨設(shè)點H,G分別在x、y軸的正半軸上,∴∠MQH=∠GQN,又∵∠QHM=∠QGN=90°∴△QHM∽△QGN…(5分),∴,當點P、Q在拋物線和直線上不同位置時,同理可得.①①如答圖2,延長AB交x軸于點F,過點F作FC⊥OA于點C,過點A作AR⊥x軸于點R∵∠AOD=∠BAE,∴AF=OF,∴OC=AC=OA=∵∠ARO=∠FCO=90°,∠AOR=∠FOC,∴△AOR∽△FOC,∴,∴OF=,∴點F(,0),設(shè)點B(x,),過點B作BK⊥AR于點K,則△AKB∽△ARF,∴,即,解得x1=6,x2=3(舍去),∴點B(6,2),∴BK=6﹣3=3,AK=6﹣2=4,∴AB=5(求AB也可采用下面的方法)設(shè)直線AF為y=kx+b(k≠0)把點A(3,6),點F(,0)代入得k=,b=10,∴,∴,∴(舍去),,∴B(6,2),∴AB=5在△ABE與△OED中∵∠BAE=∠BED,∴∠ABE+∠AEB=∠DEO+∠AEB,∴∠ABE=∠DEO,∵∠BAE=∠EOD,∴△ABE∽△OED.設(shè)OE=x,則AE=﹣x(),由△ABE∽△OED得,∴∴()∴頂點為(,)如答圖3,當時,OE=x=,此時E點有1個;當時,任取一個m的值都對應著兩個x值,此時E點有2個.∴當時,E點只有1個當時,E點有2個26、(1)y=﹣2x+1;(2)點P的坐標為(﹣,0)或(,0).【解析】

(1)把A的坐標代入可求出m,即可求出反比例函數(shù)解析式,把B點的坐標代入反比例函數(shù)解析式,即可求出n,把A,B的坐標代入一次函數(shù)解析式即可求出一次函數(shù)解析式;(2)利用一次函數(shù)圖象上點的坐標特征可求出點C的坐標,設(shè)點P的坐標為(x,0),根據(jù)三角形的面積公式結(jié)合S△ABP=3,即可得出,解之即可得出結(jié)論.【詳解】(1)∵雙曲線y=(m≠0)經(jīng)過點A(﹣,2),∴m=﹣1.∴雙曲線的表達式為y=﹣.∵點B(n,﹣1)在雙曲線y=﹣上,∴點B的坐標為(1,﹣1).∵直線y=kx+b經(jīng)過點A(﹣,2),B(1,﹣1),∴,解得∴直線的表達式為y=﹣2x+1;(2)當y=﹣2x+1=0時,x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論