




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知a,b為兩個連續的整數,且a<<b,則a+b的值為()A.7 B.8 C.9 D.102.若點都是反比例函數的圖象上的點,并且,則下列各式中正確的是(()A. B. C. D.3.如圖,把一個矩形紙片ABCD沿EF折疊后,點D、C分別落在D′、C′的位置,若∠EFB=65°,則∠AED′為()。A.70° B.65° C.50° D.25°4.下列圖形中為正方體的平面展開圖的是()A. B.C. D.5.將拋物線y=-2xA.y=-2(x+1)2C.y=-2(x-1)26.如果一組數據6,7,x,9,5的平均數是2x,那么這組數據的中位數為()A.5 B.6 C.7 D.97.如圖,中,E是BC的中點,設,那么向量用向量表示為()A. B. C. D.8.一個兩位數,它的十位數字是3,個位數字是拋擲一枚質地均勻的骰子(六個面分別標有數字1﹣6)朝上一面的數字,任意拋擲這枚骰子一次,得到的兩位數是3的倍數的概率等于()A. B. C. D.9.“龜兔賽跑”是同學們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是()A.賽跑中,兔子共休息了50分鐘B.烏龜在這次比賽中的平均速度是0.1米/分鐘C.兔子比烏龜早到達終點10分鐘D.烏龜追上兔子用了20分鐘10.如圖是某蓄水池的橫斷面示意圖,分為深水池和淺水池,如果向這個蓄水池以固定的流量注水,下面能大致表示水的最大深度與時間之間的關系的圖象是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為9m,那么這棟建筑物的高度為_____m.12.圓錐底面圓的半徑為3,高為4,它的側面積等于_____(結果保留π).13.在平面直角坐標系中,點P到軸的距離為1,到軸的距離為2.寫出一個符合條件的點P的坐標________________.14.如圖,四邊形ABCD中,AD=CD,∠B=2∠D=120°,∠C=75°.則=15.口袋中裝有4個小球,其中紅球3個,黃球1個,從中隨機摸出兩球,都是紅球的概率為_________.16.寫出一個平面直角坐標系中第三象限內點的坐標:(__________)17.如果拋物線y=(k﹣2)x2+k的開口向上,那么k的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)五一期間,小紅到郊野公園游玩,在景點P處測得景點B位于南偏東45°方向,然后沿北偏東37°方向走200m米到達景點A,此時測得景點B正好位于景點A的正南方向,求景點A與景點B之間的距離.(結果保留整數)參考數據:sin37≈0.60,cos37°=0.80,tan37°≈0.7519.(5分)為了解某市市民“綠色出行”方式的情況,某校數學興趣小組以問卷調查的形式,隨機調查了某市部分出行市民的主要出行方式(參與問卷調查的市民都只從以下五個種類中選擇一類),并將調查結果繪制成如下不完整的統計圖.種類ABCDE出行方式共享單車步行公交車的士私家車根據以上信息,回答下列問題:(1)參與本次問卷調查的市民共有人,其中選擇B類的人數有人;(2)在扇形統計圖中,求A類對應扇形圓心角α的度數,并補全條形統計圖;(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數.20.(8分)中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優秀傳統文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,B,C,D四個等級,并將結果繪制成如圖所示的條形統計圖和扇形統計圖,但均不完整.請你根據統計圖解答下列問題:參加比賽的學生共有____名;在扇形統計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.21.(10分)先化簡,再求值:,其中的值從不等式組的整數解中選取.22.(10分)如圖1,反比例函數(x>0)的圖象經過點A(,1),射線AB與反比例函數圖象交于另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.(1)求k的值;(2)求tan∠DAC的值及直線AC的解析式;(3)如圖2,M是線段AC上方反比例函數圖象上一動點,過M作直線l⊥x軸,與AC相交于點N,連接CM,求△CMN面積的最大值.23.(12分)計算:|﹣2|+8+(2017﹣π)0﹣4cos45°24.(14分)如圖,拋物線y=﹣+bx+c交x軸于點A(﹣2,0)和點B,交y軸于點C(0,3),點D是x軸上一動點,連接CD,將線段CD繞點D旋轉得到DE,過點E作直線l⊥x軸,垂足為H,過點C作CF⊥l于F,連接DF.(1)求拋物線解析式;(2)若線段DE是CD繞點D順時針旋轉90°得到,求線段DF的長;(3)若線段DE是CD繞點D旋轉90°得到,且點E恰好在拋物線上,請求出點E的坐標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】∵9<11<16,∴,即,∵a,b為兩個連續的整數,且,∴a=3,b=4,∴a+b=7,故選A.2、B【解析】
解:根據題意可得:∴反比例函數處于二、四象限,則在每個象限內為增函數,且當x<0時y>0,當x>0時,y<0,∴<<.3、C【解析】
首先根據AD∥BC,求出∠FED的度數,然后根據軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,則可知∠DEF=∠FED′,最后求得∠AED′的大小.【詳解】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折疊的性質知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故選:C.【點睛】此題考查了長方形的性質與折疊的性質.此題比較簡單,解題的關鍵是注意數形結合思想的應用.4、C【解析】
利用正方體及其表面展開圖的特點依次判斷解題.【詳解】由四棱柱四個側面和上下兩個底面的特征可知A,B,D上底面不可能有兩個,故不是正方體的展開圖,選項C可以拼成一個正方體,故選C.【點睛】本題是對正方形表面展開圖的考查,熟練掌握正方體的表面展開圖是解題的關鍵.5、C【解析】試題分析:∵拋物線y=-2x2+1向右平移1個單位長度,∴平移后解析式為:y=-2考點:二次函數圖象與幾何變換.6、B【解析】
直接利用平均數的求法進而得出x的值,再利用中位數的定義求出答案.【詳解】∵一組數據1,7,x,9,5的平均數是2x,∴,解得:,則從大到小排列為:3,5,1,7,9,故這組數據的中位數為:1.故選B.【點睛】此題主要考查了中位數以及平均數,正確得出x的值是解題關鍵.7、A【解析】
根據,只要求出即可解決問題.【詳解】解:四邊形ABCD是平行四邊形,,,,,,,故選:A.【點睛】本題考查平面向量,解題的關鍵是熟練掌握三角形法則,屬于中考常考題型.8、B【解析】
直接得出兩位數是3的倍數的個數,再利用概率公式求出答案.【詳解】∵一枚質地均勻的骰子,其六個面上分別標有數字1,2,3,4,5,6,投擲一次,十位數為3,則兩位數是3的倍數的個數為2.∴得到的兩位數是3的倍數的概率為:=.故答案選:B.【點睛】本題考查了概率的知識點,解題的關鍵是根據題意找出兩位數是3的倍數的個數再運用概率公式解答即可.9、D【解析】分析:根據圖象得出相關信息,并對各選項一一進行判斷即可.詳解:由圖象可知,在賽跑中,兔子共休息了:50-10=40(分鐘),故A選項錯誤;烏龜跑500米用了50分鐘,平均速度為:(米/分鐘),故B選項錯誤;兔子是用60分鐘到達終點,烏龜是用50分鐘到達終點,兔子比烏龜晚到達終點10分鐘,故C選項錯誤;在比賽20分鐘時,烏龜和兔子都距起點200米,即烏龜追上兔子用了20分鐘,故D選項正確.故選D.點睛:本題考查了從圖象中獲取信息的能力.正確識別圖象、獲取信息并進行判斷是解題的關鍵.10、C【解析】
首先看圖可知,蓄水池的下部分比上部分的體積小,故h與t的關系變為先快后慢.【詳解】根據題意和圖形的形狀,可知水的最大深度h與時間t之間的關系分為兩段,先快后慢。故選:C.【點睛】此題考查函數的圖象,解題關鍵在于觀察圖形二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】分析:根據同時同地的物高與影長成正比列式計算即可得解.詳解:設這棟建筑物的高度為xm,由題意得,,解得x=1,即這棟建筑物的高度為1m.故答案為1.點睛:同時同地的物高與影長成正比,利用相似三角形的相似比,列出方程,通過解方程求出這棟高樓的高度,體現了方程的思想.12、15π【解析】
根據圓的面積公式、扇形的面積公式計算即可.【詳解】圓錐的母線長==5,,圓錐底面圓的面積=9π圓錐底面圓的周長=2×π×3=6π,即扇形的弧長為6π,∴圓錐的側面展開圖的面積=×6π×5=15π,【點睛】本題考查的是扇形的面積,熟練掌握扇形和圓的面積公式是解題的關鍵.13、(寫出一個即可)【解析】【分析】根據點到x軸的距離即點的縱坐標的絕對值,點到y軸的距離即點的橫坐標的絕對值,進行求解即可.【詳解】設P(x,y),根據題意,得|x|=2,|y|=1,即x=±2,y=±1,則點P的坐標有(2,1),(2,-1),(-2,1),(2,-1),故答案為:(2,1),(2,-1),(-2,1),(2,-1)(寫出一個即可).【點睛】本題考查了點的坐標和點到坐標軸的距離之間的關系.熟知點到x軸的距離即點的縱坐標的絕對值,點到y軸的距離即點的橫坐標的絕對值是解題的關鍵.14、【解析】
連接AC,過點C作CE⊥AB的延長線于點E,,如圖,先在Rt△BEC中根據含30度的直角三角形三邊的關系計算出BC、CE,判斷△AEC為等腰直角三角形,所以∠BAC=45°,AC=,利用即可求解.【詳解】連接AC,過點C作CE⊥AB的延長線于點E,∵∠ABC=2∠D=120°,∴∠D=60°,∵AD=CD,∴△ADC是等邊三角形,∵∠D+∠DAB+∠ABC+∠DCB=360°,∴∠ACB=∠DCB-∠DCA=75°-60°=15°,∠BAC=180°-∠ABC-∠ACB=180°-120°-15°=45°,∴AE=CE,∠EBC=45°+15°=60°,∴∠BCE=90°-60°=30°,設BE=x,則BC=2x,CE=,在RT△AEC中,AC=,∴,故答案為.【點睛】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.合理作輔助線是解題的關鍵.15、【解析】
先畫出樹狀圖,用隨意摸出兩個球是紅球的結果個數除以所有可能的結果個數即可.【詳解】∵從中隨意摸出兩個球的所有可能的結果個數是12,隨意摸出兩個球是紅球的結果個數是6,∴從中隨意摸出兩個球的概率=;故答案為:.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.16、答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數即可.【解析】
讓橫坐標、縱坐標為負數即可.【詳解】在第三象限內點的坐標為:(﹣1,﹣1)(答案不唯一).故答案為答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數即可.17、k>2【解析】
根據二次函數的性質可知,當拋物線開口向上時,二次項系數k﹣2>1.【詳解】因為拋物線y=(k﹣2)x2+k的開口向上,所以k﹣2>1,即k>2,故答案為k>2.【點睛】本題考查二次函數,解題的關鍵是熟練運用二次函數的圖象與性質,本題屬于中等題型.三、解答題(共7小題,滿分69分)18、景點A與B之間的距離大約為280米【解析】
由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的長,可以先求出AC和BC的長.【詳解】解:如圖,作PC⊥AB于C,則∠ACP=∠BCP=90°,由題意,可得∠A=37°,∠B=45°,PA=200m.在Rt△ACP中,∵∠ACP=90°,∠A=37°,∴AC=AP?cosA=200×0.80=160,PC=AP?sinA=200×0.60=1.在Rt△BPC中,∵∠BCP=90°,∠B=45°,∴BC=PC=1.∴AB=AC+BC=160+1=280(米).答:景點A與B之間的距離大約為280米.【點睛】本題考查了解直角三角形的應用-方向角問題,對于解一般三角形,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.19、(1)800,240;(2)補圖見解析;(3)9.6萬人.【解析】試題分析:(1)由C類別人數及其百分比可得總人數,總人數乘以B類別百分比即可得;(2)根據百分比之和為1求得A類別百分比,再乘以360°和總人數可分別求得;(3)總人數乘以樣本中A、B、C三類別百分比之和可得答案.試題解析:(1)本次調查的市民有200÷25%=800(人),∴B類別的人數為800×30%=240(人),故答案為800,240;(2)∵A類人數所占百分比為1﹣(30%+25%+14%+6%)=25%,∴A類對應扇形圓心角α的度數為360°×25%=90°,A類的人數為800×25%=200(人),補全條形圖如下:(3)12×(25%+30%+25%)=9.6(萬人),答:估計該市“綠色出行”方式的人數約為9.6萬人.考點:1、條形統計圖;2、用樣本估計總體;3、統計表;4、扇形統計圖20、(1)20;(2)40,1;(3).【解析】試題分析:(1)根據等級為A的人數除以所占的百分比求出總人數;(2)根據D級的人數求得D等級扇形圓心角的度數和m的值;(3)列表得出所有等可能的情況數,找出一男一女的情況數,即可求出所求的概率.試題解析:解:(1)根據題意得:3÷15%=20(人),故答案為20;(2)C級所占的百分比為×100%=40%,表示“D等級”的扇形的圓心角為×360°=1°;故答案為40、1.(3)列表如下:所有等可能的結果有6種,其中恰好是一名男生和一名女生的情況有4種,則P恰好是一名男生和一名女生==.21、-2.【解析】試題分析:先算括號里面的,再算除法,解不等式組,求出x的取值范圍,選出合適的x的值代入求值即可.試題解析:原式===解得-1≤x<,∴不等式組的整數解為-1,0,1,2若分式有意義,只能取x=2,∴原式=-=-2【點睛】本題考查的是分式的化簡求值,分式中的一些特殊求值題并非是一味的化簡,代入,求值.許多問題還需運用到常見的數學思想,如化歸思想(即轉化)、整體思想等,了解這些數學解題思想對于解題技巧的豐富與提高有一定幫助.22、(1);(2),;(3)【解析】試題分析:(1)根據反比例函數圖象上點的坐標特征易得k=2;(2)作BH⊥AD于H,如圖1,根據反比例函數圖象上點的坐標特征確定B點坐標為(1,2),則AH=2﹣1,BH=2﹣1,可判斷△ABH為等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根據特殊角的三角函數值得tan∠DAC=;由于AD⊥y軸,則OD=1,AD=2,然后在Rt△OAD中利用正切的定義可計算出CD=2,易得C點坐標為(0,﹣1),于是可根據待定系數法求出直線AC的解析式為y=x﹣1;(3)利用M點在反比例函數圖象上,可設M點坐標為(t,)(0<t<2),由于直線l⊥x軸,與AC相交于點N,得到N點的橫坐標為t,利用一次函數圖象上點的坐標特征得到N點坐標為(t,t﹣1),則MN=﹣t+1,根據三角形面積公式得到S△CMN=?t?(﹣t+1),再進行配方得到S=﹣(t﹣)2+(0<t<2),最后根據二次函數的最值問題求解.試題解析:(1)把A(2,1)代入y=,得k=2×1=2;(2)作BH⊥AD于H,如圖1,把B(1,a)代入反比例函數解析式y=,得a=2,∴B點坐標為(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH為等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y軸,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C點坐標為(0,﹣1),設直線AC的解析式為y=kx+b,把A(2,1)、C(0,﹣1)代入得,解得,∴直線AC的解析式為y=x﹣1;(3)設M點坐標為(t,)(0<t<2),∵直線l⊥x軸,與AC相交于點N,∴N點的橫坐標為t,∴N點坐標為(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,∴S△CMN=?t?(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴當t=時,S有最大值,最大值為.23、1.【解析】
直接利用零指數冪的性質以及特殊角的三角函數值和絕對值的性質分別化簡得出答案.【詳解】解:原式=2+22+1﹣4×2=2+22+1﹣22=1.【點睛】此題主要考查了實數運算,正確化簡各數是解題關鍵.24、(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國際海運貨物運輸合同文本
- 理發店員工合同協議書
- 《房地產基礎》課件 情境一 教你選對地段
- 新房交易合同中介四方
- 普法宣講【法律學堂】第二十二章 起訴意見書-ldfjxs004
- 肇慶市實驗中學高三上學期語文高效課堂教學設計:文言文教案
- 江蘇省南京市致遠中學2024-2025學年初三下學期第四次模擬考試卷數學試題理試卷含解析
- 石家莊科技職業學院《礦資專業英語》2023-2024學年第二學期期末試卷
- 江西省寧都縣第二中學2024-2025學年初三7月調研考試(化學試題文)試題含解析
- 宜昌市2024-2025學年六年級下學期調研數學試卷含解析
- 硫酸車間焚硫爐烘爐及鍋爐煮爐方案資料
- 大班語言《扁擔和板凳》
- 新產品試產管理程序
- 錨索抗滑樁畢業設計(湖南工程學院)
- 各國關于數據與個人隱私的法律規定
- 人教版(PEP)五年級英語下冊(U1-U4)單元專題訓練(含答案)
- 維生素K2行業研究、市場現狀及未來發展趨勢(2020-2026)
- 定遠縣蔡橋水庫在建工程實施方案
- 繪本故事《三只小豬蓋房子》課件
- GB 13296-2013 鍋爐、熱交換器用不銹鋼無縫鋼管(高清版)
- 部編版八年級語文下冊寫作《學寫讀后感》精美課件
評論
0/150
提交評論