七年級下冊數學提綱浙教版_第1頁
七年級下冊數學提綱浙教版_第2頁
七年級下冊數學提綱浙教版_第3頁
七年級下冊數學提綱浙教版_第4頁
七年級下冊數學提綱浙教版_第5頁
已閱讀5頁,還剩1頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

七年級下冊數學提綱浙教版數學是很多同學的薄弱科目,隨著中考越來越近,很多同學想要提升數學成績,你是不是也是這樣呢?下面給大家分享七年級下冊數學提綱浙教版,希望可以幫助大家,歡迎閱讀!

七年級下冊數學提綱浙教版

【概率】

一、事件:

1、事件分為必然事件、不可能事件、不確定事件。

2、必然事件:事先就能肯定一定會發生的事件。也就是指該事件每次一定發生,不可能不發生,即發生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不會發生的事件。也就是指該事件每次都完全沒有時機發生,即發生的可能性為零。

4、不確定事件:事先無法肯定會不會發生的事件,也就是說該事件可能發生,也可能不發生,即發生的可能性在0和1之間。

二、等可能性:是指幾種事件發生的可能性相等。

1、概率:是反映事件發生的可能性的大小的量,它是一個比例數,一般用P來表示,P(A)=事件A可能出現的結果數/所有可能出現的結果數。

2、必然事件發生的概率為1,記作P(必然事件)=1;

3、不可能事件發生的概率為0,記作P(不可能事件)=0;

4、不確定事件發生的概率在0—1之間,記作0

三、幾何概率

1、事件A發生的概率等于此事件A發生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發生在每個單位面積上的概率是一樣的。

2、求幾何概率:

(1)首先分析事件所占的面積與總面積的關系;

(2)然后計算出各部分的面積;

(3)最后代入公式求出幾何概率。

【三角形】

1、三角形→由不在同一直線上的三條線段首尾順次相接所組成的圖形。

2、判斷三條線段能否組成三角形。

①a+b>c(ab為最短的兩條線段)

②a-b

3、第三邊取值范圍:a-b

4、對應周長取值范圍

假設兩邊分別為a,b那么周長的取值范圍是2a

如兩邊分別為5和7那么周長的取值范圍是14

5、三角形中三角的關系

(1)、三角形內角和定理:三角形的三個內角的和等于1800。

n邊行內角和公式(n-2)

(2)、三角形按內角的大小可分為三類:

(1)銳角三角形,即三角形的三個內角都是銳角的三角形;

(2)直角三角形,即有一個內角是直角的三角形,我們通常用“RtΔ〞表示“直角三角形〞,其中直角∠C所對的邊AB稱為直角三角表的斜邊,夾直角的兩邊稱為直角三角形的直角邊。

注:直角三角形的性質:直角三角形的兩個銳角互余。

(3)鈍角三角形,即有一個內角是鈍角的三角形。

(3)、斷定一個三角形的形狀主要看三角形中角的度數。

(4)、直角三角形的面積等于兩直角邊乘積的一半。

6、三角形的三條重要線段

(1)、三角形的角平分線:

1、三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

2、任意三角形都有三條角平分線,并且它們相交于三角形內一點。(內心)

(2)、三角形的中線:

1、在三角形中,連接一個頂點與它對邊中點的線段,叫做這個三角形的中線。

2、三角形有三條中線,它們相交于三角形內一點。(重心)

3、三角形的中線把這個三角形分成面積相等的兩個三角形

(3)、三角形的高線:

1、從三角形的一個頂點向它的對邊所在的直線做垂線,頂點和垂足之間的線段叫做三角形的高線,簡稱為三角形的高。

2、任意三角形都有三條高線,它們所在的直線相交于一點。(垂心)

3、注意等底等高知識的考試

7、相關命題:

1)三角形中最多有1個直角或鈍角,最多有3個銳角,最少有2個銳角。

2)銳角三角形中的銳角的取值范圍是60≤X3)任意一個三角形兩角平分線的夾角=90+第三角的一半。

4)鈍角三角形有兩條高在外部。

5)全等圖形的大小(面積、周長)、形狀都一樣。

6)面積相等的兩個三角形不一定是全等圖形。

7)可以完全重合的兩個圖形是全等圖形。

8)三角形具有穩定性。

9)三條邊分別對應相等的兩個三角形全等。

10)三個角對應相等的兩個三角形不一定全等。

11)兩個等邊三角形不一定全等。

12)兩角及一邊對應相等的兩個三角形全等。

13)兩邊及一角對應相等的兩個三角形不一定全等。

14)兩邊及它們的夾角對應相等的兩個三角形全等。

15)兩條直角邊對應相等的兩個直角三角形全等。

16)一條斜邊和一直角邊對應相等的兩個三角形全等。

17)一個銳角和一邊(直角邊或斜邊)對應相等的兩個三角形全等。

18)一角和一邊對應相等的兩個直角三角形不一定全等。

19)有一個角是60的等腰三角形是等邊三角形。

8、全等圖形

1、兩個可以重合的圖形稱為全等圖形。

2、全等圖形的性質:全等圖形的形狀和大小都一樣。

9、全等三角形

1、可以重合的兩個三角形是全等三角形,用符號“≌〞連接,讀作“全等于〞。

2、用“≌〞連接的兩個全等三角形,表示對應頂點的字母寫在對應的位置上。

10、全等三角形的斷定

1、三邊對應相等的兩個三角形全等,簡寫為“邊邊邊〞或“SSS〞。

2、兩角和它們的夾邊對應相等的兩個三角形全等,簡寫為“角邊角〞或“ASA〞。

3、兩角和其中一角的對邊對應相等的兩個三角形全等,簡寫為“角角邊〞或“AAS〞。

4、兩邊和它們的夾角對應相等的兩個三角形全等,簡寫為“邊角邊〞或“SAS〞。

11、做三角形(3種做法:兩邊及夾角、兩角及夾邊、三邊、兩角及一邊可以轉化為兩角及夾邊)。

12、利用三角形全等測間隔;

13、、直角三角形全等的條件:在直角三角形中,斜邊和一條直角邊對應相等的兩個直角三角形全等,簡寫成“斜邊、直角邊〞或“HL〞。

【變量之間的關系】

一理論理解

1、假設Y隨X的變化而變化,那么X是自變量Y是因變量。

自變量是主動發生變化的量,因變量是隨著自變量的變化而發生變化的量,數值保持不變的量叫做常量。

3、假設等腰三角形頂角是y,底角是x,那么y與x的關系式為y=180-2x.

2、能確定變量之間的關系式:相關公式①路程=速度×時間②長方形周長=2×(長+寬)③梯形面積=(上底+下底)×高÷2④本息和=本金+利率×本金×時間。⑤總價=單價×總量。⑥平均速度=總路程÷總時間

二、列表法:采用數表相結合的形式,運用表格可以表示兩個變量之間的關系。列表時要選取能代表自變量的一些數據,并按從小到大的順序列出,再分別求出因變量的對應值。列表法的特點是直觀,可以直接從表中找出自變量與因變量的對應值,但缺點是具有局限性,只能表示因變量的一部分。

三.關系式法:關系式是利用數學式子來表示變量之間關系的等式,利用關系式,可以根據任何一個自變量的值求出相應的因變量的值,也可以因變量的值求出相應的自變量的值。

四、圖像注意:a.認真理解圖象的含義,注意選擇一個能反映題意的圖象;b.從橫軸和縱軸的實際意義理解圖象上特殊點的含義(坐標),特別是圖像的起點、拐點、交點

八、事物變化趨勢的描繪:對事物變化趨勢的描繪一般有兩種:

1.隨著自變量x的逐漸增加(大),因變量y逐漸增加(大)(或者用函數語言描繪也可:因變量y隨著自變量x的增加(大)而增加(大));

2.隨著自變量x的逐漸增加(大),因變量y逐漸減小(或者用函數語言描繪也可:因變量y隨著自變量x的增加(大)而減小).

注意:假如在整個過程中事物的變化趨勢不一樣,可以采用分段描繪.例如在什么范圍內隨著自變量x的逐漸增加(大),因變量y逐漸增加(大)等等.

九、估計(或者估算)對事物的估計(或者估算)有三種:

1.利用事物的變化規律進展估計(或者估算).例如:自變量x每增加一定量,因變量y的變化情況;平均每次(年)的變化情況(平均每次的變化量=(尾數-首數)/次數或相差年數)等等;

2.利用圖象:首先根據假設干個對應組值,作出相應的圖象,再在圖象上找到對應的點對應的因變量y的值;

3.利用關系式:首先求出關系式,然后直接代入求值即可.

【生活中的軸對稱】

1、軸對稱圖形:假如一個圖形沿一條直線折疊后,直線兩旁的部分可以完全重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。

2、軸對稱:對于兩個圖形,假如沿一條直線對折后,它們能互相重合,那么稱這兩個圖形成軸對稱,這條直線就是對稱軸。可以說成:這兩個圖形關于某條直線對稱。

3、軸對稱圖形與軸對稱的區別:軸對稱圖形是一個圖形,軸對稱是兩個圖形的關系。

聯絡:它們都是圖形沿某直線折疊可以互相重合。

2、成軸對稱的兩個圖形一定全等。

3、全等的兩個圖形不一定成軸對稱。

4、對稱軸是直線。

5、角平分線的性質

1、角平分線所在的直線是該角的對稱軸。

2、性質:角平分線上的點到這個角的兩邊的間隔相等。

6、線段的垂直平分線

1、垂直于一條線段并且平分這條線段的直線叫做這條線段的垂直平分線,又叫線段的中垂線。

2、性質:線段垂直平分線上的點到這條線段兩端點的間隔相等。

7、軸對稱圖形有:

等腰三角形(1條或3條)、等腰梯形(1條)、長方形(2條)、菱形(2條)、正方形(4條)、圓(無數條)、線段(1條)、角(1條)、正五角星。

8、等腰三角形性質:

①兩個底角相等。②兩個條邊相等。③“三線合一〞。④底邊上的高、中線、頂角的平分線所在直線是它的對稱軸。

9、①“等角對等邊〞∵∠B=∠C∴AB=AC

②“等邊對等角〞∵AB=AC∴∠B=∠C

10、角平分線性質:

角平分線上的點到角兩邊的間隔相等。

∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF

11、垂直平分線性質:垂直平分線上的點到線段兩端點的間隔相等。

∵OC垂直平分AB∴AC=BC

12、軸對稱的性質

1、兩個圖形沿一條直線對折后,可以重合的點稱為對應點(對稱點),可以重合的線段稱為對應線段,可以重合的角稱為對應角。2、關于某條直線對稱的兩個圖形是全等圖形。

2、假如兩個圖形關于某條直線對稱,那么對應點所連的線段被對稱軸垂直平分。

3、假如兩個圖形關于某條直線對稱,那么對應線段、對應角都相等。

13、鏡面對稱

1.當物體正對鏡面擺放時,鏡面會改變它的左右方向;

2.當垂直于鏡面擺放時,鏡面會改變它的上下方向;

3.假如是軸對稱圖形,當對稱軸與鏡面平行時,其鏡子中影像與原圖一樣;

學生通過討論,可能會找出以下解決物體與像之間互相轉化問題的方法:

(1)利用鏡子照(注意鏡子的位置擺放);(2)利用軸對稱性質;

(3)可以把數字左右顛倒,或做簡單的軸對稱圖形;

(4)可以看像的反面;(5)根據前面的結論在頭腦中想象。

數學學習困難的原因

1、學習自覺性較差

初中生學習自覺性較差,缺少解題的積極性,解題時不注重步驟、過程。

2、學習意志薄弱

數學的邏輯性和抽象性很強,知識間聯絡嚴密,對學生的靈敏應用才能,分析才能要求很強。假如學生對前面所學的知識掌握不好或未理解的話,就會直接影響深一層次內容的學習,造成知識脫節,跟不上集體學習的進程,在加在自身的毅力薄弱。其結果往往就會產生厭學情緒,放棄數學的學習。

3、無興趣學習或興趣低

一部分學生一開場就沒有學好數學,導致根底不好,久而久之導致惡性循環;還有些學生認為學數學沒用,選擇放棄選讀,因此成績變得連“過得去〞也難以維持。

4、沒有養成良好的數學學習習慣

有些學生邊學邊玩,注意力不集中,或是思維單一,不能橫向考慮或縱深考慮;又或者不聽不記,思維懶惰,粗心大意、馬虎等等都是造成錯誤率高的重要原因。

所以同學們要注意自己是否存在以上問題,要想方法及時解決。

如何快速進步數學成績

1.重視復習

初三是中考備考階段,共分為三個復習階段,而且中考考生在每一個復習階段的學習重點是不同的,中考考生要循序漸進的進展復習,不要好高騖遠,中考考生在一輪復習時重視根底知識的學習,在二輪復習時學會將數學根底知識運用到解題中,中考考生在第三輪復習時重視查缺補漏,彌補以前忽略的知識。不同的中考考生的實際情況不一樣,想要快速進步數學成績,那么需要對自己有一個正確的認識,重視相應的復習階段。

2.制定方案

想要快速提升數學成績,中考考生需要有一個符合自己實際情況的學習方案,既要做長期打算,也要有短期安排,中考考生要嚴格的要求自己、堅持落實自己的學習方案。而且要做到天天清,要有一個不達目的不罷休的決心。

3.培養思維

中考考生在學習數學時,邏輯思維才能的強弱是非常重要的,所以中考考生在初三想要快速進步數學成績,就需要鍛煉自己的邏輯思維才能。中考考生可以通過新穎的解題方式來進展鍛煉,也可以運用逆向思維進展學習。

4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論