




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖是由4個相同的正方體搭成的幾何體,則其俯視圖是()A. B. C. D.2.下列圖形中,可以看作中心對稱圖形的是()A. B. C. D.3.下列說法錯誤的是()A.必然事件的概率為1B.數據1、2、2、3的平均數是2C.數據5、2、﹣3、0的極差是8D.如果某種游戲活動的中獎率為40%,那么參加這種活動10次必有4次中獎4.如圖是某個幾何體的展開圖,該幾何體是()A.三棱柱 B.圓錐 C.四棱柱 D.圓柱5.小明同學在學習了全等三角形的相關知識后發現,只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據是()A.角的內部到角的兩邊的距離相等的點在角的平分線上B.角平分線上的點到這個角兩邊的距離相等C.三角形三條角平分線的交點到三條邊的距離相等D.以上均不正確6.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC的中點,點F是BD的中點.若AB=10,則EF=()A.2.5 B.3 C.4 D.57.使用家用燃氣灶燒開同一壺水所需的燃氣量(單位:)與旋鈕的旋轉角度(單位:度)()近似滿足函數關系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃氣灶燒開同一壺水的旋鈕角度與燃氣量的三組數據,根據上述函數模型和數據,可推斷出此燃氣灶燒開一壺水最節省燃氣的旋鈕角度約為()A. B. C. D.8.下列運算正確的是()A.3a2﹣2a2=1 B.a2?a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b29.如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接C′B,則C′B的長為()A. B. C. D.110.關于x的方程x2﹣3x+k=0的一個根是2,則常數k的值為()A.1 B.2 C.﹣1 D.﹣2二、填空題(本大題共6個小題,每小題3分,共18分)11.已知m=,n=,那么2016m﹣n=_____.12.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線段BD的最大值為_____.13.如圖,四邊形ABCD是菱形,∠BAD=60°,AB=6,對角線AC與BD相交于點O,點E在AC上,若OE=2,則CE的長為_______14.已知a+b=4,a-b=3,則a2-b2=____________.15.計算(5ab3)2的結果等于_____.16.計算:=_____.三、解答題(共8題,共72分)17.(8分)如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.(=1.73,結果保留一位小數.)18.(8分)計算:;解方程:19.(8分)在平面直角坐標系xOy中,點A在x軸的正半軸上,點B的坐標為(0,4),BC平分∠ABO交x軸于點C(2,0).點P是線段AB上一個動點(點P不與點A,B重合),過點P作AB的垂線分別與x軸交于點D,與y軸交于點E,DF平分∠PDO交y軸于點F.設點D的橫坐標為t.(1)如圖1,當0<t<2時,求證:DF∥CB;(2)當t<0時,在圖2中補全圖形,判斷直線DF與CB的位置關系,并證明你的結論;(3)若點M的坐標為(4,-1),在點P運動的過程中,當△MCE的面積等于△BCO面積的倍時,直接寫出此時點E的坐標.20.(8分)如圖,在△ABC中,∠ACB=90°,O是AB上一點,以OA為半徑的⊙O與BC相切于點D,與AB交于點E,連接ED并延長交AC的延長線于點F.(1)求證:AE=AF;(2)若DE=3,sin∠BDE=,求AC的長.21.(8分)某居民小區一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下面是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬,水面最深地方的高度為4cm,求這個圓形截面的半徑.22.(10分)已知:在△ABC中,AC=BC,D,E,F分別是AB,AC,CB的中點.求證:四邊形DECF是菱形.23.(12分)解不等式組并寫出它的整數解.24.如圖,中,于,點分別是的中點.(1)求證:四邊形是菱形(2)如果,求四邊形的面積
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:從上面看是一行3個正方形.故選A考點:三視圖2、B【解析】
根據中心對稱圖形的概念求解.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;
B、是中心對稱圖形,故此選項正確;
C、不是中心對稱圖形,故此選項錯誤;
D、不是中心對稱圖形,故此選項錯誤.
故選:B.【點睛】此題主要考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.3、D【解析】試題分析:A.概率值反映了事件發生的機會的大小,必然事件是一定發生的事件,所以概率為1,本項正確;B.數據1、2、2、3的平均數是1+2+2+34C.這些數據的極差為5﹣(﹣3)=8,故本項正確;D.某種游戲活動的中獎率為40%,屬于不確定事件,可能中獎,也可能不中獎,故本說法錯誤,故選D.考點:1.概率的意義;2.算術平均數;3.極差;4.隨機事件4、A【解析】
側面為三個長方形,底邊為三角形,故原幾何體為三棱柱.【詳解】解:觀察圖形可知,這個幾何體是三棱柱.
故選A.【點睛】本題考查的是三棱柱的展開圖,對三棱柱有充分的理解是解題的關鍵..5、A【解析】
過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,因為是兩把完全相同的長方形直尺,可得CE=CF,再根據角的內部到角的兩邊的距離相等的點在這個角的平分線上可得OP平分∠AOB【詳解】如圖所示:過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,∵兩把完全相同的長方形直尺,∴CE=CF,∴OP平分∠AOB(角的內部到角的兩邊的距離相等的點在這個角的平分線上),故選A.【點睛】本題主要考查了基本作圖,關鍵是掌握角的內部到角的兩邊的距離相等的點在這個角的平分線上這一判定定理.6、A【解析】
先利用直角三角形的性質求出CD的長,再利用中位線定理求出EF的長.【詳解】∵∠ACB=90°,D為AB中點∴CD=1∵點E、F分別為BC、BD中點∴EF=1故答案為:A.【點睛】本題考查的知識點是直角三角形的性質和中位線定理,解題關鍵是尋找EF與題目已知長度的線段的數量關系.7、C【解析】
根據已知三點和近似滿足函數關系y=ax2+bx+c(a≠0)可以大致畫出函數圖像,并判斷對稱軸位置在36和54之間即可選擇答案.【詳解】解:由圖表數據描點連線,補全圖像可得如圖,拋物線對稱軸在36和54之間,約為41℃∴旋鈕的旋轉角度在36°和54°之間,約為41℃時,燃氣灶燒開一壺水最節省燃氣.故選:C,【點睛】本題考查了二次函數的應用,二次函數的圖像性質,熟練掌握二次函數圖像對稱性質,判斷對稱軸位置是解題關鍵.綜合性較強,需要有較高的思維能力,用圖象法解題是本題考查的重點.8、D【解析】
根據合并同類項法則,可知3a2﹣2a2=a2,故不正確;根據同底數冪相乘,可知a2?a3=a5,故不正確;根據完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正確;根據完全平方公式,可知(a+b)2=a2+2ab+b2,正確.故選D.【詳解】請在此輸入詳解!9、C【解析】
延長BC′交AB′于D,根據等邊三角形的性質可得BD⊥AB′,利用勾股定理列式求出AB,然后根據等邊三角形的性質和等腰直角三角形的性質求出BD、C′D,然后根據BC′=BD-C′D計算即可得解.【詳解】解:延長BC′交AB′于D,連接BB',如圖,在Rt△AC′B′中,AB′=AC′=2,∵BC′垂直平分AB′,∴C′D=AB=1,∵BD為等邊三角形△ABB′的高,∴BD=AB′=,∴BC′=BD-C′D=-1.故本題選擇C.【點睛】熟練掌握勾股定理以及由旋轉60°得到△ABB′是等邊三角形是解本題的關鍵.10、B【解析】
根據一元二次方程的解的定義,把x=2代入得4-6+k=0,然后解關于k的方程即可.【詳解】把x=2代入得,4-6+k=0,解得k=2.故答案為:B.【點睛】本題主要考查了一元二次方程的解,掌握一元二次方程的定義,把已知代入方程,列出關于k的新方程,通過解新方程來求k的值是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
根據積的乘方的性質將m的分子轉化為以3和5為底數的冪的積,然后化簡從而得到m=n,再根據任何非零數的零次冪等于1解答.【詳解】解:∵m===,∴m=n,∴2016m-n=20160=1.故答案為:1【點睛】本題考查了同底數冪的除法,積的乘方的性質,難點在于轉化m的分母并得到m=n.12、3【解析】
以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據三角形三邊關系,可求EC的最大值,即可求BD的最大值.【詳解】如圖:以AB為邊作等邊△ABE,
,
∵△ACD,△ABE是等邊三角形,
∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,
∴∠EAC=∠BAD,且AE=AB,AD=AC,
∴△DAB≌△CAE(SAS)
∴BD=CE,
若點E,點B,點C不共線時,EC<BC+BE;
若點E,點B,點C共線時,EC=BC+BE.
∴EC≤BC+BE=3,
∴EC的最大值為3,即BD的最大值為3.
故答案是:3【點睛】考查了旋轉的性質,等邊三角形的性質,全等三角形的判定和性質,以及三角形的三邊關系,恰當添加輔助線構造全等三角形是本題的關鍵.13、5或【解析】分析:由菱形的性質證出△ABD是等邊三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.詳解:∵四邊形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∴△ABD是等邊三角形,∴BD=AB=6,∴∴∴∵點E在AC上,∴當E在點O左邊時當點E在點O右邊時∴或;故答案為或.點睛:考查菱形的性質,注意分類討論思想在數學中的應用,不要漏解.14、1.【解析】
a2-b2=(a+b)(a-b)=4×3=1.故答案為:1.考點:平方差公式.15、25a2b1.【解析】
代數式內每項因式均平方即可.【詳解】解:原式=25a2b1.【點睛】本題考查了代數式的乘方.16、-【解析】
根據二次根式的運算法則即可求出答案.【詳解】原式=2.故答案為-.【點睛】本題考查二次根式的運算法則,解題的關鍵是熟練運用二次根式的運算法則,本題屬于基礎題型.三、解答題(共8題,共72分)17、塔CD的高度為37.9米【解析】試題分析:首先分析圖形,根據題意構造直角三角形.本題涉及兩個直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分別計算,可得到一個關于AC的方程,從而求出DC.試題解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.則有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度為(8+24)米≈37.9米,答:塔CD的高度為37.9米.18、(1)2(2)【解析】
(1)原式第一項利用負指數冪法則計算,第二項利用特殊角的三角函數值化簡,第三項利用絕對值的代數意義化簡,最后一項利用零指數冪法則計算可得到結果;(2)移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可.【詳解】(1)原式==2;(2)∴【點睛】本題考查了實數運算以及平方根的應用,正確掌握相關運算法則是解題的關鍵.19、(1)詳見解析;(2)詳見解析;(3)詳見解析.【解析】
(1)求出∠PBO+∠PDO=180°,根據角平分線定義得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根據平行線的性質得出即可;
(2)求出∠ABO=∠PDA,根據角平分線定義得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根據垂直定義得出即可;
(3)分為兩種情況:根據三角形面積公式求出即可.【詳解】(1)證明:如圖1.
∵在平面直角坐標系xOy中,點A在x軸的正半軸上,點B的坐標為(0,4),
∴∠AOB=90°.
∵DP⊥AB于點P,
∴∠DPB=90°,
∵在四邊形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,
∴∠PBO+∠PDO=180°,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠PBO,∠ODF=∠PDO,
∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,
∵在△FDO中,∠OFD+∠ODF=90°,
∴∠CBO=∠DFO,
∴DF∥CB.
(2)直線DF與CB的位置關系是:DF⊥CB,
證明:延長DF交CB于點Q,如圖2,
∵在△ABO中,∠AOB=90°,
∴∠BAO+∠ABO=90°,
∵在△APD中,∠APD=90°,
∴∠PAD+∠PDA=90°,
∴∠ABO=∠PDA,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠ABO,∠CDQ=∠PDO,
∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,
∴∠CDQ+∠DCQ=90°,
∴在△QCD中,∠CQD=90°,
∴DF⊥CB.
(3)解:過M作MN⊥y軸于N,
∵M(4,-1),
∴MN=4,ON=1,
當E在y軸的正半軸上時,如圖3,
∵△MCE的面積等于△BCO面積的倍時,
∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,
解得:OE=,
當E在y軸的負半軸上時,如圖4,
×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,
解得:OE=,
即E的坐標是(0,)或(0,-).【點睛】本題考查了平行線的性質和判定,三角形內角和定理,坐標與圖形性質,三角形的面積的應用,題目綜合性比較強,有一定的難度.20、(1)證明見解析;(2)1.【解析】
(1)根據切線的性質和平行線的性質解答即可;(2)根據直角三角形的性質和三角函數解答即可.【詳解】(1)連接OD,∵OD=OE,∴∠ODE=∠OED.∵直線BC為⊙O的切線,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)連接AD,∵AE是⊙O的直徑,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,=sin∠DAF=sin∠BDE=,∴AF=3DF=9,在Rt△CDF中,=sin∠CDF=sin∠BDE=,∴CF=DF=1,∴AC=AF﹣CF=1.【點睛】本題考查了切線的性質,解直角三角形的應用,等腰三角形的判定等,綜合性較強,正確添加輔助線、熟練掌握和靈活運用相關知識是解題的關鍵.21、這個圓形截面的半徑為10cm.【解析】分析:先作輔助線,利用垂徑定理求出半徑,再根據勾股定理計算.解答:解:如圖,OE⊥AB交AB于點D,則DE=4,AB=16,AD=8,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年學前班保育員個人工作方案演講稿
- 2025年營銷部年度工作方案
- 職業生涯規劃 企業培訓與發展
- 保險公司2025年度工作方案
- 病歷書寫規范模板
- 疼痛病人的護理
- 金融市場全產品分類介紹
- 江蘇財會職業學院《棒球》2023-2024學年第二學期期末試卷
- 溫州肯恩大學《化工類專業導論》2023-2024學年第二學期期末試卷
- 2025年寧夏平羅縣學業水平考試物理試題模擬卷(九)含解析
- 看板管理-精益生產
- 向最高檢察院提起申訴書范文
- 菜鳥WMS(大寶)操作手冊 (修復的)
- 葫蘆島蘭家溝礦業有限公司(鉬礦)礦山地質環境保護與土地復墾方案
- nc600產品說明書串口服務器使用
- 2022年07月甘肅張掖市引進高層次急需人才23人筆試題庫含答案解析
- 不良資產處置法律實務
- 工程施工強制性條文執行記錄表
- 小學信息科技《羊村防御門-人臉識別的應用》說課稿
- 特種設備安全管理人員(A)考試題庫
- 《植物生產與環境》課程標準
評論
0/150
提交評論