河南省新鄉市2023年高三3月份模擬考試數學試題含解析_第1頁
河南省新鄉市2023年高三3月份模擬考試數學試題含解析_第2頁
河南省新鄉市2023年高三3月份模擬考試數學試題含解析_第3頁
河南省新鄉市2023年高三3月份模擬考試數學試題含解析_第4頁
河南省新鄉市2023年高三3月份模擬考試數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設全集U=R,集合,則()A. B. C. D.2.三國時代吳國數學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設勾股形中勾股比為,若向弦圖內隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數大約為()A. B. C. D.3.復數的實部與虛部相等,其中為虛部單位,則實數()A.3 B. C. D.4.已知函數的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點旋轉;②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④5.設實數x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.46.的展開式中的常數項為()A.-60 B.240 C.-80 D.1807.已知集合,集合,若,則()A. B. C. D.8.上世紀末河南出土的以鶴的尺骨(翅骨)制成的“骨笛”(圖1),充分展示了我國古代高超的音律藝術及先進的數學水平,也印證了我國古代音律與歷法的密切聯系.圖2為骨笛測量“春(秋)分”,“夏(冬)至”的示意圖,圖3是某骨笛的部分測量數據(骨笛的彎曲忽略不計),夏至(或冬至)日光(當日正午太陽光線)與春秋分日光(當日正午太陽光線)的夾角等于黃赤交角.由歷法理論知,黃赤交角近1萬年持續減小,其正切值及對應的年代如下表:黃赤交角正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根據以上信息,通過計算黃赤交角,可估計該骨笛的大致年代是()A.公元前2000年到公元元年 B.公元前4000年到公元前2000年C.公元前6000年到公元前4000年 D.早于公元前6000年9.達芬奇的經典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數百年來讓無數觀賞者人迷.某業余愛好者對《蒙娜麗莎》的縮小影像作品進行了粗略測繪,將畫中女子的嘴唇近似看作一個圓弧,在嘴角處作圓弧的切線,兩條切線交于點,測得如下數據:(其中).根據測量得到的結果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角大約等于()A. B. C. D.10.過雙曲線的左焦點作傾斜角為的直線,若與軸的交點坐標為,則該雙曲線的標準方程可能為()A. B. C. D.11.已知函數,若,則a的取值范圍為()A. B. C. D.12.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知F為雙曲線的右焦點,過F作C的漸近線的垂線FD,D為垂足,且(O為坐標原點),則C的離心率為________.14.已知等差數列的前n項和為,,,則=_______.15.設是等比數列的前項的和,成等差數列,則的值為_____.16.已知函數在點處的切線經過原點,函數的最小值為,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點,且,滿足條件的點的軌跡為曲線.(1)求曲線的方程;(2)是否存在過點的直線,直線與曲線相交于兩點,直線與軸分別交于兩點,使得?若存在,求出直線的方程;若不存在,請說明理由.18.(12分)已知函數.其中是自然對數的底數.(1)求函數在點處的切線方程;(2)若不等式對任意的恒成立,求實數的取值范圍.19.(12分)已知.(Ⅰ)當時,解不等式;(Ⅱ)若的最小值為1,求的最小值.20.(12分)對于給定的正整數k,若各項均不為0的數列滿足:對任意正整數總成立,則稱數列是“數列”.(1)證明:等比數列是“數列”;(2)若數列既是“數列”又是“數列”,證明:數列是等比數列.21.(12分)在平面直角坐標系中,曲線的參數方程為(為參數),將曲線上每一點的橫坐標變為原來的倍,縱坐標不變,得到曲線,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,射線與曲線交于點,將射線繞極點逆時針方向旋轉交曲線于點.(1)求曲線的參數方程;(2)求面積的最大值.22.(10分)對于很多人來說,提前消費的認識首先是源于信用卡,在那個工資不高的年代,信用卡絕對是神器,稍微大件的東西都是可以選擇用信用卡來買,甚至于分期買,然后慢慢還!現在銀行貸款也是很風靡的,從房貸到車貸到一般的現金貸.信用卡“忽如一夜春風來”,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中隨機抽取了100人進行抽樣分析,得到如下列聯表(單位:人)經常使用信用卡偶爾或不用信用卡合計40歲及以下15355040歲以上203050合計3565100(1)根據以上數據,能否在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關?(2)①現從所抽取的40歲及以下的網民中,按“經常使用”與“偶爾或不用”這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出4人贈送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;②將頻率視為概率,從市所有參與調查的40歲以上的網民中隨機抽取3人贈送禮品,記其中經常使用信用卡的人數為,求隨機變量的分布列、數學期望和方差.參考公式:,其中.參考數據:0.150.100.050.0250.0102.0722.7063.8415.0246.635

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【詳解】,,則,故選:A.【點睛】本題考查集合的交集和補集的運算,考查指數不等式和二次不等式的解法,屬于基礎題.2、A【解析】分析:設三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內的概率即可得出結論.解析:設三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內的概率為.落在黃色圖形內的圖釘數大約為.故選:A.點睛:應用幾何概型求概率的方法建立相應的幾何概型,將試驗構成的總區域和所求事件構成的區域轉化為幾何圖形,并加以度量.(1)一般地,一個連續變量可建立與長度有關的幾何概型,只需把這個變量放在數軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序實數對來表示它的基本事件,然后利用平面直角坐標系就能順利地建立與面積有關的幾何概型;(3)若一個隨機事件需要用三個連續變量來描述,則可用這三個變量組成的有序數組來表示基本事件,利用空間直角坐標系即可建立與體積有關的幾何概型.3、B【解析】

利用乘法運算化簡復數即可得到答案.【詳解】由已知,,所以,解得.故選:B【點睛】本題考查復數的概念及復數的乘法運算,考查學生的基本計算能力,是一道容易題.4、D【解析】

計算得到,,故函數是周期函數,軸對稱圖形,故②④正確,根據圖像知①③錯誤,得到答案.【詳解】,,,當沿軸正方向平移個單位時,重合,故②正確;,,故,函數關于對稱,故④正確;根據圖像知:①③不正確;故選:.【點睛】本題考查了根據函數圖像判斷函數性質,意在考查學生對于三角函數知識和圖像的綜合應用.5、C【解析】

畫出可行域和目標函數,根據目標函數的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標函數,z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據圖像知,當x+y=2時,且x∈-13,1時,故選:C.【點睛】本題考查了線性規劃問題,畫出圖像是解題的關鍵.6、D【解析】

求的展開式中的常數項,可轉化為求展開式中的常數項和項,再求和即可得出答案.【詳解】由題意,中常數項為,中項為,所以的展開式中的常數項為:.故選:D【點睛】本題主要考查二項式定理的應用和二項式展開式的通項公式,考查學生計算能力,屬于基礎題.7、A【解析】

根據或,驗證交集后求得的值.【詳解】因為,所以或.當時,,不符合題意,當時,.故選A.【點睛】本小題主要考查集合的交集概念及運算,屬于基礎題.8、D【解析】

先理解題意,然后根據題意建立平面幾何圖形,在利用三角函數的知識計算出冬至日光與春秋分日光的夾角,即黃赤交角,即可得到正確選項.【詳解】解:由題意,可設冬至日光與垂直線夾角為,春秋分日光與垂直線夾角為,則即為冬至日光與春秋分日光的夾角,即黃赤交角,將圖3近似畫出如下平面幾何圖形:則,,.,估計該骨笛的大致年代早于公元前6000年.故選:.【點睛】本題考查利用三角函數解決實際問題的能力,運用了兩角和與差的正切公式,考查了轉化思想,數學建模思想,以及數學運算能力,屬中檔題.9、A【解析】

由已知,設.可得.于是可得,進而得出結論.【詳解】解:依題意,設.則.,.設《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角為.則,.故選:A.【點睛】本題考查了直角三角形的邊角關系、三角函數的單調性、切線的性質,考查了推理能力與計算能力,屬于中檔題.10、A【解析】

直線的方程為,令,得,得到a,b的關系,結合選項求解即可【詳解】直線的方程為,令,得.因為,所以,只有選項滿足條件.故選:A【點睛】本題考查直線與雙曲線的位置關系以及雙曲線的標準方程,考查運算求解能力.11、C【解析】

求出函數定義域,在定義域內確定函數的單調性,利用單調性解不等式.【詳解】由得,在時,是增函數,是增函數,是增函數,∴是增函數,∴由得,解得.故選:C.【點睛】本題考查函數的單調性,考查解函數不等式,解題關鍵是確定函數的單調性,解題時可先確定函數定義域,在定義域內求解.12、C【解析】

由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復幾何體是解題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

求出焦點到漸近線的距離就可得到的等式,從而可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,由得,∴,,∴.故答案為:2.【點睛】本題考查求雙曲線的離心率,解題關鍵是求出焦點到漸近線的距離,從而得出一個關于的等式.14、【解析】

利用求出公差,結合等差數列的通項公式可求.【詳解】設公差為,因為,所以,即.所以.故答案為:【點睛】本題主要考查等差數列通項公式的求解,利用等差數列的基本量是求解這類問題的通性通法,側重考查數學運算的核心素養.15、2【解析】

設等比數列的公比設為再根據成等差數列利用基本量法求解再根據等比數列各項間的關系求解即可.【詳解】解:等比數列的公比設為成等差數列,可得若則顯然不成立,故則,化為解得,則故答案為:.【點睛】本題主要考查了等比數列的基本量求解以及運用,屬于中檔題.16、0【解析】

求出,求出切線點斜式方程,原點坐標代入,求出的值,求,求出單調區間,進而求出極小值最小值,即可求解.【詳解】,,,切線的方程:,又過原點,所以,,,.當時,;當時,.故函數的最小值,所以.故答案為:0.【點睛】本題考查導數的應用,涉及到導數的幾何意義、極值最值,屬于中檔題..三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,或.【解析】

(1)由得看成到兩定點的和為定值,滿足橢圓定義,用定義可解曲線的方程.(2)先討論斜率不存在情況是否符合題意,當直線的斜率存在時,設直線點斜式方程,由,可得,再直線與橢圓聯解,利用根的判別式得到關于的一元二次方程求解.【詳解】解:設,由,,可得,即為,由,可得的軌跡是以為焦點,且的橢圓,由,可得,可得曲線的方程為;假設存在過點的直線l符合題意.當直線的斜率不存在,設方程為,可得為短軸的兩個端點,不成立;當直線的斜率存在時,設方程為,由,可得,即,可得,化為,由可得,由在橢圓內,可得直線與橢圓相交,,則化為,即為,解得,所以存在直線符合題意,且方程為或.【點睛】本題考查求軌跡方程及直線與圓錐曲線位置關系問題.(1)定義法求軌跡方程的思路:應用定義法求軌跡方程的關鍵在于由已知條件推出關于動點的等量關系式,由等量關系結合曲線定義判斷是何種曲線,再設出標準方程,用待定系數法求解;(2)解決是否存在直線的問題時,可依據條件尋找適合條件的直線方程,聯立方程消元得出一元二次方程,利用判別式得出是否有解.18、(1);(2).【解析】

(1)利用導數的幾何意義求出切線的斜率,再求出切點坐標即可得在點處的切線方程;(2)令,然后利用導數并根據a的情況研究函數的單調性和最值.【詳解】(1),,∴,又,∴切線方程為,即.(2)令,,①若,則在上單調遞減,又,∴恒成立,∴在上單調遞減,又,∴恒成立.②若,令,∴,易知與在上單調遞減,∴在上單調遞減,,當即時,在上恒成立,∴在上單調遞減,即在上單調遞減,又,∴恒成立,∴在上單調遞減,又,∴恒成立,當即時,使,∴在遞增,此時,∴,∴在遞增,∴,不合題意.綜上,實數的取值范圍是.【點睛】本題主要考查導數的幾何意義及構造函數解決含參數的不等式恒成立時求參數的取值范圍問題,第二問的難點是構造函數后二次求導問題,對分類討論思想及化歸與等價轉化思想要求較高,難度較大,屬拔高題.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)當時,令,作出的圖像,結合圖像即可求解;(Ⅱ)結合絕對值三角不等式可得,再由“1”的妙用可拼湊為,結合基本不等式即可求解;【詳解】(Ⅰ)令,作出它們的大致圖像如下:由或(舍),得點橫坐標為2,由對稱性知,點橫坐標為﹣2,因此不等式的解集為.(Ⅱ)..取等號的條件為,即,聯立得因此的最小值為.【點睛】本題考查絕對值不等式、基本不等式,屬于中檔題20、(1)證明見詳解;(2)證明見詳解【解析】

(1)由是等比數列,由等比數列的性質可得:即可證明.(2)既是“數列”又是“數列”,可得,,則對于任意都成立,則成等比數列,設公比為,驗證得答案.【詳解】(1)證明:由是等比數列,由等比數列的性質可得:等比數列是“數列”.(2)證明:既是“數列”又是“數列”,可得,()(),()可得:對于任意都成立,即成等比數列,即成等比數列,成等比數列,成等比數列,設,()數列是“數列”時,由()可得:時,由()可得:,可得,同理可證成等比數列,數列是等比數列【點睛】本題是一道數列的新定義題目,考查了等比數列的性質、通項公式等基本知識,考查代數推理、轉化與化歸以及綜合運用數學知識探究與解決問題的能力,屬于難題.21、(1)(為參數);(2).【解析】

(1)根據伸縮變換結合曲線的參數方程可得出曲線的參數方程;(2)將曲線的方程化為普通方程,然后化為極坐標方程,設點的極坐標為,點的極坐標為,將這兩點的極坐標代入橢圓的極坐標方程,得出和關于的表達式,然后利用三角恒等變換思想即可求出面積的最大值.【詳解】(1)由于曲

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論