




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.已知二次函數y=3(x﹣1)2+k的圖象上有三點A(,y1),B(2,y2),C(﹣,y3),則y1、y2、y3的大小關系為()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y12.的倒數是()A.﹣ B.2 C.﹣2 D.3.若一組數據1、、2、3、4的平均數與中位數相同,則不可能是下列選項中的()A.0 B.2.5 C.3 D.54.甲、乙、丙、丁四名射擊運動員進行淘汰賽,在相同條件下,每人射擊10次,甲、乙兩人的成績如圖所示,丙、丁二人的成績如表所示.欲淘汰一名運動員,從平均數和方差兩個因素分析,應淘汰()丙丁平均數88方差1.21.8A.甲 B.乙 C.丙 D.丁5.下列圖形不是正方體展開圖的是()A. B.C. D.6.如圖,已知直線PQ⊥MN于點O,點A,B分別在MN,PQ上,OA=1,OB=2,在直線MN或直線PQ上找一點C,使△ABC是等腰三角形,則這樣的C點有()A.3個B.4個C.7個D.8個7.如圖是一個正方體被截去一角后得到的幾何體,從上面看得到的平面圖形是()A. B. C. D.8.方程(m–2)x2+3mx+1=0是關于x的一元二次方程,則()A.m≠±2 B.m=2 C.m=–2 D.m≠29.如圖,立體圖形的俯視圖是A. B. C. D.10.如圖,已知是中的邊上的一點,,的平分線交邊于,交于,那么下列結論中錯誤的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE二、填空題(本大題共6個小題,每小題3分,共18分)11.不等式≥-1的正整數解為________________.12.寫出一個一次函數,使它的圖象經過第一、三、四象限:______.13.大型紀錄片《厲害了,我的國》上映25天,累計票房約為402700000元,成為中國紀錄電影票房冠軍.402700000用科學記數法表示是________.14.二次根式在實數范圍內有意義,x的取值范圍是_____.15.不等式組的最小整數解是_____.16.已知(x+y)2=25,(x﹣y)2=9,則x2+y2=_____.三、解答題(共8題,共72分)17.(8分)計算:(π﹣3.14)0﹣2﹣|﹣3|.18.(8分)(1)計算:(﹣2)﹣2+cos60°﹣(﹣2)0;(2)化簡:(a﹣)÷.19.(8分)如圖,在?ABCD中,AE⊥BC交邊BC于點E,點F為邊CD上一點,且DF=BE.過點F作FG⊥CD,交邊AD于點G.求證:DG=DC.20.(8分)﹣(﹣1)2018+﹣()﹣121.(8分)已知關于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有兩個不相等的實數根.求k的取值范圍;寫出一個滿足條件的k的值,并求此時方程的根.22.(10分)如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.填空:∠AHC∠ACG;(填“>”或“<”或“=”)線段AC,AG,AH什么關系?請說明理由;設AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.23.(12分)先化簡,再求值:,其中的值從不等式組的整數解中選取.24.在如圖的正方形網格中,每一個小正方形的邊長為1;格點三角形ABC(頂點是網格線交點的三角形)的頂點A、C的坐標分別是(-4,6)、(-1,4);請在圖中的網格平面內建立平面直角坐標系;請畫出△ABC關于x軸對稱的△A1B1C1;請在y軸上求作一點P,使△PB1C的周長最小,并直接寫出點P的坐標.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:根據二次函數的解析式y=3(x-1)2+k,可知函數的開口向上,對稱軸為x=1,根據函數圖像的對稱性,可得這三點的函數值的大小為y3>y2>y1.故選D點睛:此題主要考查了二次函數的圖像與性質,解題時先根據頂點式求出開口方向,和對稱軸,然后根據函數的增減性比較即可,這是中考常考題,難度有點偏大,注意結合圖形判斷驗證.2、B【解析】
根據乘積是1的兩個數叫做互為倒數解答.【詳解】解:∵×1=1∴的倒數是1.故選B.【點睛】本題考查了倒數的定義,是基礎題,熟記概念是解題的關鍵.3、C【解析】
解:這組數據1、a、2、1、4的平均數為:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)將這組數據從小到大的順序排列后為a,1,2,1,4,中位數是2,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=2,解得a=0,符合排列順序.(2)將這組數據從小到大的順序排列后為1,a,2,1,4,中位數是2,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=2,解得a=0,不符合排列順序.(1)將這組數據從小到大的順序排列后1,2,a,1,4,中位數是a,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=a,解得a=2.5,符合排列順序.(4)將這組數據從小到大的順序排列后為1,2,1,a,4,中位數是1,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=1,解得a=5,不符合排列順序.(5)將這組數據從小到大的順序排列為1,2,1,4,a,中位數是1,平均數是0.2a+2,∵這組數據1、a、2、1、4的平均數與中位數相同,∴0.2a+2=1,解得a=5;符合排列順序;綜上,可得:a=0、2.5或5,∴a不可能是1.故選C.【點睛】本題考查中位數;算術平均數.4、D【解析】
求出甲、乙的平均數、方差,再結合方差的意義即可判斷.【詳解】=(6+10+8+9+8+7+8+9+7+7)=8,=[(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]=×13=1.3;=(7+10+7+7+9+8+7+9+9+7)=8,=[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]=×12=1.2;丙的平均數為8,方差為1.2,丁的平均數為8,方差為1.8,故4個人的平均數相同,方差丁最大.故應該淘汰?。蔬xD.【點睛】本題考查方差、平均數、折線圖等知識,解題的關鍵是記住平均數、方差的公式.5、B【解析】
由平面圖形的折疊及正方體的展開圖解題.【詳解】A、C、D經過折疊均能圍成正方體,B折疊后上邊沒有面,不能折成正方體.故選B.【點睛】此題主要考查平面圖形的折疊及正方體的展開圖,熟練掌握,即可解題.6、D【解析】試題分析:根據等腰三角形的判定分類別分別找尋,分AB可能為底,可能是腰進行分析.解:使△ABC是等腰三角形,當AB當底時,則作AB的垂直平分線,交PQ,MN的有兩點,即有兩個三角形.當讓AB當腰時,則以點A為圓心,AB為半徑畫圓交PQ,MN有三點,所以有三個.當以點B為圓心,AB為半徑畫圓,交PQ,MN有三點,所以有三個.所以共8個.故選D.點評:本題考查了等腰三角形的判定;解題的關鍵是要分情況而定,所以學生一定要思維嚴密,不可遺漏.7、B【解析】
根據俯視圖是從上面看到的圖形可得俯視圖為正方形以及右下角一個三角形.【詳解】從上面看,是正方形右邊有一條斜線,如圖:故選B.【點睛】考查了三視圖的知識,根據俯視圖是從物體的上面看得到的視圖得出是解題關鍵.8、D【解析】試題分析:根據一元二次方程的概念,可知m-2≠0,解得m≠2.故選D9、C【解析】試題分析:立體圖形的俯視圖是C.故選C.考點:簡單組合體的三視圖.10、C【解析】
根據相似三角形的判定,采用排除法,逐項分析判斷.【詳解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正確.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正確.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正確.而不能證明△BDF∽△BEC,故C錯誤.故選C.【點睛】本題考查相似三角形的判定.識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應邊和對應角.二、填空題(本大題共6個小題,每小題3分,共18分)11、1,2,1.【解析】
去分母,移項,合并同類項,系數化成1即可求出不等式的解集,根據不等式的解集即可求出答案.【詳解】,
∴1-x≥-2,
∴-x≥-1,
∴x≤1,
∴不等式的正整數解是1,2,1,
故答案為:1,2,1.【點睛】本題考查了解一元一次不等式和一元一次不等式的整數解,關鍵是求出不等式的解集.12、y=x﹣1(答案不唯一)【解析】一次函數圖象經過第一、三、四象限,則可知y=kx+b中k>0,b<0,由此可得如:y=x﹣1(答案不唯一).13、4.027【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.詳解:402700000用科學記數法表示是4.027×1.故答案為4.027×1.點睛:本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.14、x≤1【解析】
根據二次根式有意義的條件列出不等式,解不等式即可.【詳解】解:由題意得,1﹣x≥0,解得,x≤1,故答案為x≤1.【點睛】本題考查的是二次根式有意義的條件,掌握二次根式中的被開方數必須是非負數是解題的關鍵.15、-1【解析】分析:先求出每個不等式的解集,再求出不等式組的解集,即可得出答案.詳解:.∵解不等式①得:x>-3,解不等式②得:x≤1,∴不等式組的解集為-3<x≤1,∴不等式組的最小整數解是-1,故答案為:-1.點睛:本題考查了解一元一次不等式組和不等式組的整數解,能根據不等式的解集得出不等式組的解集是解此題的關鍵.16、17【解析】
先利用完全平方公式展開,然后再求和.【詳解】根據(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9,x2+y2-2xy=9,所以x2+y2=17.【點睛】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3)常用等價變形:,,.三、解答題(共8題,共72分)17、﹣1.【解析】
本題涉及零指數冪、負指數冪、二次根式化簡和特殊角的三角函數值4個考點.在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果.【詳解】原式=1﹣3+4﹣3,=﹣1.【點睛】本題主要考查了實數的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數指數冪、零指數冪、二次根式、絕對值等考點的運算.18、(1);(2);【解析】
(1)根據負整數指數冪、特殊角的三角函數值、零指數冪可以解答本題;(2)根據分式的減法和除法可以解答本題.【詳解】解:(1)原式(2)原式【點睛】本題考查分式的混合運算、實數的運算、負整數指數冪、特殊角的三角函數值、零指數冪,解答本題的關鍵是明確它們各自的計算方法.19、證明見解析.【解析】試題分析:先由平行四邊形的性質得到∠B=∠D,AB=CD,再利用垂直的定義得到∠AEB=∠GFD=90°,根據“ASA”判定△AEB≌△GFD,從而得到AB=DC,所以有DG=DC.試題解析:∵四邊形ABCD為平行四邊形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.考點:1.全等三角形的判定與性質;2.平行四邊形的性質.20、-1.【解析】
直接利用負指數冪的性質以及算術平方根的性質分別化簡得出答案.【詳解】原式=﹣1+1﹣3=﹣1.【點睛】本題主要考查了實數運算,正確化簡各數是解題的關鍵.21、方程的根【解析】
(1)根據方程的系數結合根的判別式,即可得出關于k的一元一次不等式,解之即可得出k的取值范圍;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【詳解】(1)∵關于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有兩個不相等的實數根,∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,解得:k<.(1)當k=0時,原方程為x1+1x=x(x+1)=0,解得:x1=0,x1=﹣1.∴當k=0時,方程的根為0和﹣1.【點睛】本題考查了根的判別式以及因式分解法解一元二次方程,解題的關鍵是:(1)牢記“當△>0時,方程有兩個不相等的實數根”;(1)取k=0,再利用分解因式法解方程.22、(1)=;(2)結論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】
(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題;(3)①△AGH的面積不變.理由三角形的面積公式計算即可;②分三種情形分別求解即可解決問題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當GC=GH時,易證△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴,∴AE=AB=.如圖2中,當CH=HG時,易證AH=BC=4,∵BC∥AH,∴=1,∴AE=BE=2.如圖3中,當CG=CH時,易證∠ECB=∠DCF=22.3.在BC上取一點M,使得BM=BE,∴∠BM
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年企業負責人安全培訓考試試題及參考答案【新】
- 2024-2025員工三級安全培訓考試試題附答案【預熱題】
- 2025標準版房屋租賃合同范本
- 2025簡易的設備租賃合同
- 2025年口腔清潔護理用品合作協議書
- 2025年印制電路板項目合作計劃書
- 2025租房合同范本下載版
- 2025家電購銷合同書協議樣本
- 2025年金屬制廚房調理器具合作協議書
- 2025年城市文化展示系統項目建議書
- 吊籃安裝安全技術交底范本
- GB/T 13460-2025再生橡膠通用規范
- 2025年農村商業銀行招聘考試筆試試題(含答案)
- 電信運營商客戶流失管理手冊
- 上饒城投筆試試題及答案
- 2025-2030鱗狀非小細胞肺癌治療學行業市場現狀供需分析及重點企業投資評估規劃分析研究報告
- 陪診師考試2024年全真模擬試題及答案
- 2024年恒豐銀行招聘筆試真題
- 課程顧問電話銷售流程
- 陜西省關于低空經濟政策
- 產品三觀:打造用戶思維法則
評論
0/150
提交評論