




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
PARTIFUNDAMENTALPRINCIPLES(基本原理)InpartI,wecoversomeofthebasicprinciplesthatapplytoaerodynamicsingeneral.ThesearethepillarsonwhichallofaerodynamicsisbasedChapter2Aerodynamics:SomeFundamentalPrinciplesandEquationsThereissogreatadifferencebetweenafluidandacollectionofsolidparticlesthatthelawsofpressureandofequilibriumoffluidsareverydifferentfromthelawsofthepressureandequilibriumofsolids.JeanLeRondd’Alembert,17682.1IntroductionandRoadMapPreparationoftoolsfortheanalysisofaerodynamicsEveryaerodynamictoolwedevelopedinthisandsubsequentchaptersisimportantfortheanalysisandunderstandingofpracticalproblemsOrientationofferedbytheroadmap2.2ReviewofVectorrelations2.2.1to2.2.10Skippedover2.2.11Relationsbetweenline,surface,andvolumeintegralsThelineintegralofAoverCisrelatedtothesurfaceintegralofA(curlofA)overSbyStokes’theorem:WhereaeraSisboundedbytheclosedcurveC:ThesurfaceintegralofAoverSisrelatedtothevolumeintegralofA(divergenceofA)overVbydivergence’theorem:WherevolumeVisboundedbytheclosedsurfaceS:Ifprepresentsascalarfield,avectorrelationshipanalogoustodivergencetheoremisgivenbygradienttheorem:2.3Modelsofthefluid:controlvolumesandfluidparticlesImportancetocreatephysicalfeelingfromphysicalobservation.Howtomakereasonablejudgmentsondifficultproblems.
Inthischapter,basicequationsofaerodynamicswillbederived.PhilosophicalprocedureinvolvedwiththedevelopmentoftheseequationsInvokethreefundamentalphysicalprincipleswhicharedeeplyentrenchedinourmacroscopicobservationsofnature,namely,a.Massisconserved,that’stosay,masscanbeneithercreatednordestroyed.b.Newton’ssecondlaw:force=mass?accelerationc.Energyisconserved;itcanonlychangefromoneformtoanother2.Determineasuitablemodelofthefluid.3.Applythefundamentalphysicalprincipleslistedinitem1tothemodelofthefluiddeterminedinitem2inordertoobtainmathematicalequationswhichproperlydescribethephysicsoftheflow.Emphasisofthissection:Whatisasuitablemodelofthefluid?Howdowevisualizethissquishysubstanceinordertoapplythethreefundamentalprinciples?Threedifferentmodelsmostlyusedtodealwithaerodynamics.
finitecontrolvolume(有限控制體)infinitesimalfluidelement(無限小流體微團)molecular(自由分子)
2.3.1FinitecontrolvolumeapproachDefinitionoffinitecontrolvolume:
aclosedvolumesculpturedwithinafiniteregionoftheflow.ThevolumeiscalledcontrolvolumeV,andthecurvedsurfacewhichenvelopsthisregionisdefinedascontrolsurfaceS.Fixedcontrolvolumeandmovingcontrolvolume.Focusofourinvestigationforfluidflow.2.3.2InfinitesimalfluidelementapproachDefinitionofinfinitesimalfluidelement:
aninfinitesimallysmallfluidelementintheflow,withadifferentialvolume.ItcontainshugelargeamountofmoleculesFixedandmovinginfinitesimalfluidelement.Focusofourinvestigationforfluidflow.Thefluidelementmaybefixedinspacewithfluidmovingthroughit,oritmaybemovingalongastreamlinewithvelocityVequaltotheflowvelocityateachpointaswell.2.3.3MoleculeapproachDefinitionofmoleculeapproach:
Thefluidpropertiesaredefinedwiththeuseofsuitablestatisticalaveraginginthemicroscopewhereinthefundamentallawsofnatureareapplieddirectlytoatomsandmolecules.Insummary,althoughmanyvariationsonthethemecanbefoundindifferenttextsforthederivationofthegeneralequationsofthefluidflow,theflowmodelcanbeusuallybecategorizedunderoneoftheapproachdescribedabove.2.3.4PhysicalmeaningofthedivergenceofvelocityDefinitionof:
isphysicallythetimerateofchangeofthevolumeofamovingfluidelementoffixedmassperunitvolumeofthatelement.Analysisoftheabovedefinition:Step1.Selectasuitablemodeltogiveaframeunderwhichtheflowfieldisbeingdescribed.
amovingcontrolvolumeisselected.Step2.Selectasuitablemodeltogiveaframeunderwhichtheflowfieldisbeingdescribed.
amovingcontrolvolumeisselected.Step3.Howaboutthecharacteristicsforthismovingcontrolvolume?volume,controlsurfaceanddensitywillbechangingasitmovestodifferentregionoftheflow.Step4.ChanginvolumeduetothemovementofaninfinitesimalelementofthesurfacedS
over
.
ThetotalchangeinvolumeofthewholecontrolvolumeoverthetimeincrementisobviouslygivenasbellowStep5.Iftheintegralaboveisdividedby
.theresultisphysicallythetimeratechangeofthecontrolvolume
Step6.ApplyingGausstheorem,wehave
Step7.Asthemovingcontrolvolumeapproachestoainfinitesimalvolume,.Thentheaboveequationcanberewrittenas
Assumethatissmallenoughsuchthatisthesamethroughout.Then,theintegralcanbeapproximatedas,wehaveorDefinitionof:
isphysicallythetimerateofchangeofthevolumeofamovingfluidelementoffixedmassperunitvolumeofthatelement.Anotherdescriptionofand:Assumeisacontrolsurfacecorrespondingtocontrolvolume,whichisselectedinthespaceattime.Attimethefluidparticlesenclosedbyattimewillhavemovedtotheregionenclosedbythesurface.ThevolumeofthegroupofparticleswithfixedidentityenclosedbyattimeisthesumofthevolumeinregionAandB.Andattime,thisvolumewillbethesumofthevolumeinregionBandC.Astimeintervalapproachestozero,coincideswith.Ifisconsideredasafixedcontrolvolume,then,theregioninAcanbeimaginedasthevolumeenterintothecontrolsurface,Cleaveout.Basedontheargumentabove,theintegralofcanbeexpressedasvolumefluxthroughfixedcontrolsurface.Further,canbeexpressedastherateatwhichfluidvolumeisleavingapointperunitvolume.Theaveragevalueofthevelocitycomponentontheright-handxfaceisTherateofvolumeflowoutoftheright-handxfaceisThatintotheleft-handxfaceisThenetoutflowfromthexfacesisperunittimeThenetoutflowfromallthefacesinx,y,zdirectionsperunittimeisThefluxofvolumefromapointis2.4ContinuityequationInthissection,wewillapplyfundamentalphysicalprinciplestothefluidmodel.Moreattentionshouldbegivenforthewayweareprogressinginthederivationofbasicflowequations.DerivationofcontinuityequationStep1.Selectionoffluidmodel.Afixedfinitecontrolvolumeisemployedastheframefortheanalysisoftheflow.Herein,thecontrolsurfaceandcontrolvolumeisfixedinspace.Step2.Introductionoftheconceptofmassflow.LetagivenareaAisarbitrarilyorientedinaflow,thefiguregivenbellowisanedgeview.IfAissmallenough,thenthevelocityVovertheareaisuniformacrossA.ThevolumeacrosstheareaAintimeintervaldt
canbegivenasThemassinsidetheshadedvolumeisThemassflowthroughisdefinedasthemasscrossingAperunitsecond,anddenotedasorTheequationabovestatesthatmassflowthroughAisgivenbytheproductAreaXdensityXcomponentofflowvelocitynormaltotheareamassfluxisdefinedasthemassflowperunitareaStep3.
Physicalprinciple
Masscanbeneithercreatednordestroyed.Step4.Descriptionoftheflowfield,controlvolumeandcontrolsurface.DirectionalelementarysurfaceareaonthecontrolsurfaceElementaryvolumeinsidethefinitecontrolvolumeStep5.Applythemassconservationlawtothiscontrolvolume.NetmassflowoutofcontrolvolumethroughsurfaceSTimeratedecreaseofmassinsidecontrolvolumeVorStep6.MathematicalexpressionofBTheelementalmassflowacrosstheareaisThephysicalmeaningofpositiveandnegativeofThenetmassflowoutofthewholecontrolsurfaceS
Step7.MathematicalexpressionofCThemasscontainedinsidetheelementalvolumeVisThemassinsidetheentirecontrolvolumeisThetimerateofincreaseofthemassinsideVisThetimerateofdecreaseofthemassinsideVisStep8.FinalresultofthederivationLetB=C,thenwegetorDerivationwithmovingcontrolvolumeMassattimeMassattimeBasedonmassconservationlawConsiderthelimitsasThenwegetthemathematicaldescriptionofthemassconservationlawwiththeuseofmovingcontrolvolumeWhythefinalresultsderivedwithdifferentfluidmodelarethesame??Step9.NotesfortheContinuityEquationaboveThecontinuityequationaboveisinintegralform,itgivesthephysicalbehaviouroverafiniteregionofspacewithoutdetailedconcernsforeverydistinctpoint.Thisfeaturegivesusnumerousopportunitiestoapplytheintegralformofcontinuityequationforpracticalfluiddynamicoraerodynamicproblems.Ifwewanttogetthedetailedperformanceatagivenpoint,then,whatshallwedealwiththeintegralformabovetogetapropermathematicdescriptionformassconservationlaw?Step10.
ContinuityEquationinDifferentialformControlvolumeisfixedinspaceTheintegrallimitisnotthesameTheintegrallimitisthesameorApossiblecasefortheintegraloverthecontrolvolumeIfthefinitecontrolvolumeisarbitrarilychoseninthespace,theonlywaytomaketheequationbeingsatisfiedisthat,theintegrandoftheequationmustbezeroatallpointswithinthecontrolvolume.Thatis,Thatisthecontinuityequationinapartialdifferentialform.ItconcernstheflowfieldvariablesatapointintheflowwithrespecttothemassconservationlawItisimportanttokeepinmindthatthecontinuityequationsinintegralformanddifferentialformareequallyvalidstatementsofthephysicalprinciplesofconservationofmass.theyaremathematicalrepresentations,butalwaysrememberthattheyspeakwords.Step11.
LimitationsoftheequationsderivedContinuumflowormolecularflowAsthenatureofthefluidisassumedasContinuumflowinthederivationsoItsatisfiesonlyforContinuumflowSteadyfloworunsteadyflowItsatisfiesbothsteadyandunsteadyflowsviscousfloworinviscidflowItsatisfiesbothviscousandinviscidflowsCompressiblefloworincompressiblwflowItsatisfiesbothCompressibleandincompressiblwflowsDifferencebetweensteadyandunsteadyflowUnsteadyflow:Theflow-fieldvariablesareafunctionofbothspatiallocationandtime,thatisSteadyflow:Theflow-fieldvariablesareafunctionofspatiallocationonly,thatisForsteadyflow:Forsteadyincompressibleflow:2.5MomentumequationNewton’ssecondlawwhereForceexertedonabodyofmassMassofthebodyAccelerationConsiderafinitemovingcontrolvolume,themassinsidethiscontrolvolumeshouldbeconstantasthecontrolvolumemovingthroughtheflowfield.Sothat,Newton’ssecondlawcanberewrittenasDerivationofmomentumequationStep1.Selectionoffluidmodel.Afixedfinitecontrolvolumeisemployedastheframefortheanalysisoftheflow.Step2.
Physicalprinciple
Force=timeratechangeofmomentumStep3.ExpressionoftheleftsideoftheequationofNewton’ssecondlaw,i.e.,theforceexertedonthefluidasitflowsthroughthecontrolvolume.Twosourcesforthisforce:Bodyforces:overeverypartofV2.Surfaceforces:overeveryelementalsurfaceofSBodyforceonaelementalvolumeBodyforceoverthecontrolvolumeSurfaceforcesoverthecontrolsurfacecanbedividedintotwoparts,oneisduetothepressuredistribution,andtheotherisduetotheviscousdistribution.PressureforceactingontheelementalsurfaceNote:indicationofthenegativesignCompletepressureforceovertheentirecontrolsurfaceThesurfaceforceduetotheviscouseffectissimplyexpressedbyTotalforceactingonthefluidinsidethecontrolvolumeasitissweepingthroughthefixedcontrolvolumeisgivenasthesumofalltheforceswehaveanalyzedStep4.ExpressionoftherightsideoftheequationofNewton’ssecondlaw,i.e.,thetimeratechangeofmomentumofthefluidasitsweepsthroughthefixedcontrolvolume.MovingcontrolvolumeLetbethemomentumofthefluidwithinregionA,
B,andC.forinstance,Attime,themomentuminsideisAttime,themomentuminsideisThemomentumchangeduringthetimeintervalorAsthetimeintervalapproachestozero,theregionBwillcoincidewithSinthespace,andthetwolimitsNetmomentumflowoutofcontrolvolumeacrosssurfaceSTimeratechangeofmomentumduetounsteadyfluctuationsofflowpropertiesinsideVTheexplanationsabovehelpsustomakeabetterunderstandingoftheargumentsgiveninthetextbookbellowNetmomentumflowoutofcontrolvolumeacrosssurfaceSTimerateofchangeofmomentumduetounsteadyfluctuationsofflowpropertiesinsidecontrolvolumeVStep5.MathematicaldescriptionofmassflowacrosstheelementalareadSismomentumflowacrosstheelementalareadSisThenetflowofmomentumoutofthecontrolvolumethroughSisStep6.MathematicaldescriptionofThemomentumintheelementalvolumedV
isThemomentumcontainedatanyinstantinsidethecontrolvolumeV
isItstimeratechangeduetounsteadyflowfluctuationisBeawareofthedifferencebetweenandStep7.FinalresultofthederivationCombinetheexpressionsoftheforcesactingonthefluidandthetimeratechangeduetotermand,respectively,accordingtoNewton’ssecondlowIt’sthemomentumequationinintegralformIt’savectorequationAdvantagesformomentumequationinintegralformStep8.
MomentumEquationinDifferentialformTrytorearrangetheeveryintegralstosharethesamelimitgradienttheoremcontrolvolumeisfixedinspaceThenwegetSplitthisvectorequationasthreescalarequationswithMomentumequationinxdirectionisdivergencetheoremAsthecontrolvolumeisarbitrarychosen,thentheintegrandshouldbeequaltozeroatanypoint,thatisxdirectionydirectionzdirectionTheseequationscanappliedforunsteady,3Dflowofanyfluid,compressibleorincompressible,viscousorinviscid.SteadyandinviscidflowwithoutbodyforcesEuler’sEquationsandNavier-StokesequationsWhetherthe
viscouseffectsarebeingconsideredornotEulersEquations:inviscidflowNavier-Stokesequations:viscousflowDeepunderstandingofdifferenttermsincontinuityandmomentumequationsTimeratechangeofmassinsidecontrolvolumeTimeratechangeofmomentuminsidecontrolvolumeNetflowofmassoutofthecontrolvolumethroughcontrolsurfaceSNetflowofvolumeoutofthecontrolvolumethroughcontrolsurfaceSNetflowofmomentumoutofthecontrolvolumethroughcontrolsurfaceSBodyforcethroughoutthecontrolvolumeVSurfaceforceoverthecontrolsurfaceSWhatwecanforeseetheapplicationsforaerodynamicproblemswithbasicflowequationsonhand?IfthesteadyincompressibleinviscidflowsareconcernedPartialdifferentialequationforvelocityPartialdifferentialequationforvelocityandpressure2.6Anapplicationofthemomentumequation:dragofa2DbodyHowtodesigna2Dwindtunneltest?Howtomeasuretheliftanddragexertedontheairfoilbythefluid?AselectedcontrolvolumearoundanairfoilDescriptionsofthecontrolvolume1.Theupperandlowerstreamlinesfaraboveandbelowthebody(abandhi).2.Linesperpendiculartotheflowvelocityfaraheadandbehindthebody(ai
andbh)3.Acutthatsurroundsandwrapsthesurfaceofthebody(cdefg)1.Pressureatabandhi.2.Pressureataiandbh
.,velocity,3.Thepressureforceoverthesurfaceabhi4.Thesurfaceforceondefbythepresenceofthebody,thisforceincludestheskinfrictiondrag,anddenotedasperunitspan.5.Thesurfaceforcesoncdandfgcanceleachother.6.Thetotalsurfaceforceontheentirecontrolvolumeis7.ThebodyforceisnegligibleApplytomomentumequation,wehaveforsteadyflowNote:it’savectorequation.Ifweonlyconcernthexcomponentoftheequation,withrepresentsthexcomponentof.Asboundariesofthecontrolvolumeabhiarechosenfarawayfromthebody,thepressureperturbationduetothepresenceofthebodycanbeneglected,thatmeans,thepressurethereequaltothefreestreampressure.Ifthepressuredistributionoverabhiisconstant,thenSothatAsab,hi,defarestreamlines,thenAscd,fg
areareadjacenttoeachother,thenTheonlycontributiontomomentumflowthroughthecontrolsurfacecomefromtheboundariesaiandbh.FordS=dy(1),themomentumflowthroughthecontrolsurfaceisNote:Thesigninfrontofeachintegralsontherighthandsideoftheequation2.TheintegrallimitsforeachintegralsontherighthandsideoftheequationConsidertheintegralformofthecontinuityequationforsteadyflow,orAsisaconstantThefinalresultgivesthedragperunitspanThedragperunitspancanbeexpressedintermsoftheknownfreestreamvelocityandflow-fieldproperties,acrossaverticalstationdownstreamofthebody.PhysicalmeaningbehindtheequationMassflowoutofthecontrolvolumeVelocitydecrementMomentumdecrementpersecondForincompressibleflow,thatis,thedensityisconstant2.6.1CommentsWiththeapplicationofmomentumprincipletoalarge,fixedcontrolvolume,anaccurateresultforoverallquantitysuchasdragonabodycanbepredictedwithknowingthedetailedflowpropertiesalongthecontrolsurface.Thattosay,itisunnecessarytoknowthethedetailsalongthesurfaceofthebody.2.7EnergyequationContinuityequationMomentumequationUnknowns:ForsteadyincompressibleinvicidflowsForcompressibleflowsisanadditionalvariable,andthereforeweneedanadditionalfundamentalequationtocompletethesystem.Thisfundamentalequationistheenergyequation,whichwearegoingtodevelop.Twoadditionalflow-fieldvariableswillappeartotheenergyequation,thatisinternalenergyandtemperature.Energyequationisonlynecessaryforcompressibleflows.Physicalprinciple(firstlawofthermodynamics)Energycanbeneithercreatednordestroyed;itcanonlychangeinform
DefinitionsofsystemandinternalenergyperunitmasseDefinitionofsurroundingsHeattransferredfromthesurroundingstothesystemWorkdoneonthesurroundingsbythesystemChangeofinternalenergyinsystemduetotheheattransferredandtheworkdoneAsenergyisconserved,soApplythefirstlawtothefluidflowingtroughthefixedcontrolvolume,andletB1=rateofheataddedtofluidinsidecontrolvolumefromsurroundings.B2=rateofworkdoneonfluidinsidecontrolvolume.B3=rateofchangeofenergyoffluidasitflowsthroughcontrolvolume.Asfirstlawshouldbesatisfied,thenB1+B2=B3Actuallyspeaking,theequationaboveisapowerequation.RateofvolumetricheatingIftheflowisviscousB1=Rateofvolumetricheating=TheforceincludesthreepartsPressureforce,bodyforceandskinfrictionforce
RateofworkdoneonfluidinsideVduetopressureforceonSRateofworkdoneonfluidinsideVduetobodyforceB2=Sincethefluidinsidethecontrolvolumeisnotstationary,itismovingatthelocalvelocitywithaconsequentkineticenergyperunitmass,so,thetotalenergyperunitmassisNetrateofflowoftotalenergyacrosscontrolsurfaceSTimeratechangeoftotalenergyinsideVduetotransientvariationsofflow-fieldpropertiesB3=B1+B2=B3EnergyequationinintegralformNotesinthetextbookEnergyequationinpartialdifferentialformIftheflowissteady,inviscid,adiabatic,withoutbodyforceAfterapplythreefundamentalphysicalprinciples,wehavederivedthreebasicequationsforfluidflow.Andtherearethreevariables,suchasForcaloricallyperfectgasesThen,onemorepropertyisadded,butwithperfectgasequationContinuity,momentumandenergyequationwithtwoadditionalequationsarefiveindependentequations,andtherefiveunknowns.Sothatwehavegotaclosedsystemfortheflowproblems.2.8Interimsummary2.9SubstantialderivativesFocusoureyeonainfinitesimalfluidelementmovingthroughaflowfield.ThevelocityfieldcanbegivenasThedensitycanbegivenasWiththeuseofTaylorseriesexpansionaboutpoint1Dividingbyincartesiancoordinates,thenSubstantialderivativeLocalderivativeconvectivederivative2.10FundamentalequationsintermofsubstantialderivativeInthissection,thecontinuity,momentumandenergyequationswillbegivenintermsofsubstantialderivativeThecontinuityequationindifferentialformisorSinceSoThisisthecontinuityequationintermsofsubstantialderivativeThexcomponentofthemomentumequationindifferentialformisorContinuityEquationhenceInthesamewaywecangetthesearethemomentumequationsintermsofsubstantialderivativeinx,y,zdirectionsrespectivelyEnergyequationintermsofsubstantialderivativeDetaileddescriptionsforthecomparisonbetweenthebasicflowequationsindifferentforms,refertothetextbook2.11Pathlines
andstreamlinesofaflowSkippedover2.12Angularvelocity,vorticityandstrainInthissection,moreattentionwillbepaidtoexaminetheorientationofthefluidelementanditsshapeasitmovesthroughastreamlineintheflowfield.Animportantquantity,vorticity,willbeintroduced.MotionofafluidelementalongastreamlineTrytosetuptherelationshipsbetweenwithandDistanceinydirectionthatAmovesduringtimeincrementDistanceinydirectionthatCmovesduringtimeincrementNetdisplacementinydirectionofCrelativetoASinceisasmallangleSimilarlyDefinition:angularvelocityofthefluidelementistheaverageangularvelocityoflinesABandAC,theyareperpendiculartoeachotheratthetimetvorticityInavelocityfield,thecurlofthevelocityisequaltothevorticityIfateverypointinaflowfield,theflowiscalledrotational.ThisimpliesthatthefluidelementshaveafiniteangularvelocityIfateverypointinaflow,theflowiscalledirrotational.Thisimpliesthatthefluidelementhavenoangularvelocity;theirmotionthroughspaceisapuretranslationDefinitionofstrain:thestrainofthefluidelementinxyplaneisthechangeofink,wherethepositivestraincorrespondstoadecreasingk.andkistheanglebetweensidesABandAC,theyareperpendiculartoeachotheratthetimetStrain=ThetimerateofstraininxyplaneisInthematrixabovewhichiscomposedofvelocityderivatives,thediagonaltermsrepresentthedilatation(擴張)
ofafluidelement.Theoffdiagonaltermsareassociatedwithrotationandstrainoffluidelement.Relationsbetweenviscouseffectandrotationofafluidelement.Irrotationalandrotationalflowsinpracticalaerodynamicproblems2.13CirculationImportanttoolforwetoobtainsolutionsforsomeverypracticalandexcitingaerodynamicproblems.Circulationcanbeusedtocalculateliftexertedonanairfoilwithunitspan.Definitionofcirculation
Note:thenegativesigninfrontofthelineintegralStokes’theoremReferringtothevectoranalysis,whatisthephysicalmeaningthattheequationbellowspeak?2.14StreamfunctionInasteady2Dsteadyflow,thedifferentialformofstreamlinescanbeexpressedasIfareknownfunctionsof,then,aftertheequationabovebeingintegrated,wecangetthealgebraicequationofthestreamlineForeachstreamline,isaconstant.Itsvaluevarieswithdifferentstreamlines.Replacingthesymbolwith,thenwehaveThefunctioniscalledstreamfunction.Differentvalueofthe,i.e,,representsdifferentstreamlinesintheflowfield.TwostreamlinesrespectingwithdifferentvaluesofPhysicalmeaningofthestreamfunctionArbitrarinessoftheintegrandconstantDifferenceinstreamfunctionbetweentwoindividualstreamlinesMassflowbetweenthetwostreamlinesab
andcd.(perunitdepthperpendiculartothepage)Howtoremovethearbitrarinessoftheconstantofintegration?Whatwillbethemassflowthroughanarbitrarycurveconnectingtwopointsonastreamline?Forasteadyflow,themassflowinsideagivenstreamtubeisconstant.Forasteadyflow,thecontinuityequationshouldbesatisfied,then,themassflowthroughaclosedcurveCiszero.ThatmeansthemassflowthroughL1isthesametothatofL2.Forasteadyflowandphysicalpossibleflows,the
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年環境工程師職業資格考試題及答案
- 社區考試題簡答題及答案
- 財務會計準則實操試題及答案
- 西方政治制度中的利益集團作用分析試題及答案
- 機電工程新興技術應用試題及答案
- 知識共享政策的實施與效果評估試題及答案
- 軟件設計師考試關鍵思考點試題及答案
- 網絡流量監控的趨勢與試題及答案
- 意識到考試復習的重要內容試題及答案
- 網絡策略與商業價值關系分析試題及答案
- 專題06手拉手模型(原卷版+解析)
- 國家開放大學本科《管理英語3》一平臺機考真題及答案總題庫珍藏版
- 20萬噸高塔造粒顆粒硝酸銨工藝安全操作規程
- CJJ82-2012 園林綠化工程施工及驗收規范
- 江蘇省南京市2022-2023學年四年級下學期數學期末試卷(含答案)
- 江蘇省南京市建鄴區2022-2023學年五年級下學期期末數學試卷
- 提高感染性休克集束化治療完成率工作方案
- 肝硬化病人健康宣教課件
- 心力衰竭病人的護理課件
- 0-3歲兒童適應性行為的發展與教育
- 【多功能自動跑步機機械結構設計4800字(論文)】
評論
0/150
提交評論