




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),若恒成立,則滿足條件的的個數(shù)為()A.0 B.1 C.2 D.32.已知函數(shù)在區(qū)間有三個零點,,,且,若,則的最小正周期為()A. B. C. D.3.秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入的值為2,則輸出的值為A. B. C. D.4.隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,下圖是某城市月至月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級,一級空氣質量最好,一級和二級都是質量合格天氣,下面敘述不正確的是()A.1月至8月空氣合格天數(shù)超過天的月份有個B.第二季度與第一季度相比,空氣達標天數(shù)的比重下降了C.8月是空氣質量最好的一個月D.6月份的空氣質量最差.5.從裝有除顏色外完全相同的3個白球和個黑球的布袋中隨機摸取一球,有放回的摸取5次,設摸得白球數(shù)為,已知,則A. B. C. D.6.函數(shù)在上單調遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)7.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.8.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.9.下列不等式正確的是()A. B.C. D.10.如圖,網(wǎng)格紙是由邊長為1的小正方形構成,若粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.11.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.12.已知函數(shù),關于的方程R)有四個相異的實數(shù)根,則的取值范圍是(
)A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知一塊半徑為2的殘缺的半圓形材料,O為半圓的圓心,,殘缺部分位于過點C的豎直線的右側,現(xiàn)要在這塊材料上裁出一個直角三角形,若該直角三角形一條邊在上,則裁出三角形面積的最大值為______.14.在某批次的某種燈泡中,隨機抽取200個樣品.并對其壽命進行追蹤調查,將結果列成頻率分布表如下:壽命(天)頻數(shù)頻率40600.30.4200.1合計2001某人從燈泡樣品中隨機地購買了個,如果這個燈泡的壽命情況恰好與按四個組分層抽樣所得的結果相同,則的最小值為______.15.滿足線性的約束條件的目標函數(shù)的最大值為________16.二項式的展開式的各項系數(shù)之和為_____,含項的系數(shù)為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓上有一動點,點的坐標為,四邊形為平行四邊形,線段的垂直平分線交于點.(Ⅰ)求點的軌跡的方程;(Ⅱ)過點作直線與曲線交于兩點,點的坐標為,直線與軸分別交于兩點,求證:線段的中點為定點,并求出面積的最大值.18.(12分)在某社區(qū)舉行的2020迎春晚會上,張明和王慧夫妻倆參加該社區(qū)的“夫妻蒙眼擊鼓”游戲,每輪游戲中張明和王慧各蒙眼擊鼓一次,每個人擊中鼓則得積分100分,沒有擊中鼓則扣積分50分,最終積分以家庭為單位計分.已知張明每次擊中鼓的概率為,王慧每次擊中鼓的概率為;每輪游戲中張明和王慧擊中與否互不影響,假設張明和王慧他們家庭參加兩輪蒙眼擊鼓游戲.(1)若家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,問張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是多少?(2)張明和王慧他們家庭兩輪游戲得積分之和的分布列和數(shù)學期望.19.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)若在上恒成立,求的取值范圍.20.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.21.(12分)已知多面體中,、均垂直于平面,,,,是的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.22.(10分)已知等差數(shù)列滿足,.(l)求等差數(shù)列的通項公式;(2)設,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由不等式恒成立問題分類討論:①當,②當,③當,考查方程的解的個數(shù),綜合①②③得解.【詳解】①當時,,滿足題意,②當時,,,,,故不恒成立,③當時,設,,令,得,,得,下面考查方程的解的個數(shù),設(a),則(a)由導數(shù)的應用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個使得成立,綜合①②③得:滿足條件的的個數(shù)是2個,故選:.【點睛】本題考查了不等式恒成立問題及利用導數(shù)研究函數(shù)的解得個數(shù),重點考查了分類討論的數(shù)學思想方法,屬難度較大的題型.2、C【解析】
根據(jù)題意,知當時,,由對稱軸的性質可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個零點,,,當時,,∴由對稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對稱性的應用,考查計算能力.3、C【解析】
由題意,模擬程序的運行,依次寫出每次循環(huán)得到的,的值,當時,不滿足條件,跳出循環(huán),輸出的值.【詳解】解:初始值,,程序運行過程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循環(huán),輸出的值為其中①②①—②得.故選:.【點睛】本題主要考查了循環(huán)結構的程序框圖的應用,正確依次寫出每次循環(huán)得到,的值是解題的關鍵,屬于基礎題.4、D【解析】由圖表可知月空氣質量合格天氣只有天,月份的空氣質量最差.故本題答案選.5、B【解析】
由題意知,,由,知,由此能求出.【詳解】由題意知,,,解得,,.故選:B.【點睛】本題考查離散型隨機變量的方差的求法,解題時要認真審題,仔細解答,注意二項分布的靈活運用.6、B【解析】
根據(jù)題意分析的圖像關于直線對稱,即可得到的單調區(qū)間,利用對稱性以及單調性即可得到的取值范圍。【詳解】根據(jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關于直線對稱,若函數(shù)在上單調遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點睛】本題考查偶函數(shù)的性質,以及函數(shù)單調性的應用,有一定綜合性,屬于中檔題。7、B【解析】
根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質、拋物線的幾何性質,考查了學生的計算能力,屬于中檔題8、A【解析】
依據(jù)無窮等比數(shù)列求和公式,先求出首項,再求出,利用無窮等比數(shù)列求和公式即可求出結果。【詳解】因為無窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A。【點睛】本題主要考查無窮等比數(shù)列求和公式的應用。9、D【解析】
根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項,又由,所以.故選D.【點睛】本題主要考查了三角函數(shù)的圖象與性質,以及對數(shù)的比較大小問題,其中解答熟記三角函數(shù)與對數(shù)函數(shù)的性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.10、C【解析】
根據(jù)三視圖還原為幾何體,結合組合體的結構特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個圓柱和一個長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.【點睛】本題主要考查三視圖的識別,利用三視圖還原成幾何體是求解關鍵,側重考查直觀想象和數(shù)學運算的核心素養(yǎng).11、D【解析】
設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設,得,求出的值,即得解.【詳解】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設,則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質,考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.12、A【解析】=,當時時,單調遞減,時,單調遞增,且當,當,
當時,恒成立,時,單調遞增且,方程R)有四個相異的實數(shù)根.令=則,,即.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
分兩種情況討論:(1)斜邊在BC上,設,則,(2)若在若一條直角邊在上,設,則,進一步利用導數(shù)的應用和三角函數(shù)關系式恒等變形和函數(shù)單調性即可求出最大值.【詳解】(1)斜邊在上,設,則,則,,從而.當時,此時,符合.(2)若一條直角邊在上,設,則,則,,由知.,當時,,單調遞增,當時,,單調遞減,.當,即時,最大.故答案為:.【點睛】此題考查實際問題中導數(shù),三角函數(shù)和函數(shù)單調性的綜合應用,注意分類討論把所有情況考慮完全,屬于一般性題目.14、10【解析】
先求出a,b,根據(jù)分層抽樣的比例引入正整數(shù)k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個,第二組有60個,第三組有80個,第四組有20個,所以四個組的比例為2:3:4:1,所以按分層抽樣法,購買的燈泡數(shù)為n=2k+3k+4k+k=10k(),所以的最小值為10.【點睛】本題考查分層抽樣基本原理的應用,涉及抽樣比、總體數(shù)量、每層樣本數(shù)量的計算,屬于基礎題.15、1【解析】
作出不等式組表示的平面區(qū)域,將直線進行平移,利用的幾何意義,可求出目標函數(shù)的最大值。【詳解】由,得,作出可行域,如圖所示:平移直線,由圖像知,當直線經(jīng)過點時,截距最小,此時取得最大值。由,解得,代入直線,得。【點睛】本題主要考查簡單的線性規(guī)劃問題的解法——平移法。16、【解析】
將代入二項式可得展開式各項系數(shù)之和,寫出二項展開式通項,令的指數(shù)為,求出參數(shù)的值,代入通項即可得出項的系數(shù).【詳解】將代入二項式可得展開式各項系數(shù)和為.二項式的展開式通項為,令,解得,因此,展開式中含項的系數(shù)為.故答案為:;.【點睛】本題考查了二項式定理及二項式展開式通項公式,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)先畫出圖形,結合垂直平分線和平行四邊形性質可得為一定值,,故可確定點軌跡為橢圓(),進而求解;(Ⅱ)設直線方程為,點坐標分別為,聯(lián)立直線與橢圓方程得,,分別由點斜式求得直線KA的方程為,令得,同理得,由結合韋達定理即可求解,而,當重合交于點時,可求最值;【詳解】(Ⅰ),所以點的軌跡是一個橢圓,且長軸長,半焦距,所以,軌跡的方程為.(Ⅱ)當直線的斜率為0時,與曲線無交點.當直線的斜率不為0時,設過點的直線方程為,點坐標分別為.直線與橢圓方程聯(lián)立得消去,得.則,.直線KA的方程為.令得.同理可得.所以.所以的中點為.不妨設點在點的上方,則.【點睛】本題考查根據(jù)橢圓的定義求橢圓的方程,橢圓中的定點定值問題,屬于中檔題18、(1)(2)詳見解析【解析】
(1)要積分超過分,則需兩人共擊中次,或者擊中次,由此利用相互獨立事件概率計算公式,計算出所求概率.(2)求得的所有可能取值,根據(jù)相互獨立事件概率計算公式,計算出分布列并求得數(shù)學期望.【詳解】(1)由題意,當家庭最終積分超過200分時,這個家庭就可以領取一臺全自動洗衣機,所以要想領取一臺全自動洗衣機,則需要這個家庭夫妻倆在兩輪游戲中至少擊中三次鼓.設事件為“張明第次擊中”,事件為“王慧第次擊中”,,由事件的獨立性和互斥性可得(張明和王慧家庭至少擊中三次鼓),所以張明和王慧他們家庭可以領取一臺全自動洗衣機的概率是.(2)的所有可能的取值為-200,-50,100,250,400.,,,,.∴的分布列為-200-50100250400∴(分)【點睛】本小題考查概率,分布列,數(shù)學期望等概率與統(tǒng)計的基礎知識;考查運算求解能力,推理論證能力,數(shù)據(jù)處理,應用意識.19、(1);(2)【解析】
(1),對函數(shù)求導,分別求出和,即可求出在點處的切線方程;(2)對求導,分、和三種情況討論的單調性,再結合在上恒成立,可求得的取值范圍.【詳解】(1)因為,所以,所以,則,故曲線在點處的切線方程為.(2)因為,所以,①當時,在上恒成立,則在上單調遞增,從而成立,故符合題意;②當時,令,解得,即在上單調遞減,則,故不符合題意;③當時,在上恒成立,即在上單調遞減,則,故不符合題意.綜上,的取值范圍為.【點睛】本題考查了曲線的切線方程的求法,考查了利用導數(shù)研究函數(shù)的單調性,考查了不等式恒成立問題,利用分類討論是解決本題的較好方法,屬于中檔題.20、(1);(2)【解析】
(1)根據(jù)正弦定理化簡得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京市順義區(qū)第一中學2024?2025學年高一下學期3月月考 數(shù)學試題(含解析)
- 2025年北京中考英語應用文常用句型歸納總結(復習必背)
- 江西傳媒職業(yè)學院《建筑結構課程設計》2023-2024學年第二學期期末試卷
- 四川航天職業(yè)技術學院《給水排水工程結構》2023-2024學年第二學期期末試卷
- 衢州職業(yè)技術學院《口腔材料》2023-2024學年第二學期期末試卷
- 內蒙古包頭一中2025屆高三復習質量監(jiān)測(五)生物試題文試卷含解析
- 遼寧省葫蘆島市2025年初三下學期期末考試語文試題仿真(B)卷含解析
- 四川外國語大學《醫(yī)學分子生物學實驗技術》2023-2024學年第二學期期末試卷
- 山西省朔州市2025屆初三5月月考試題數(shù)學試題含解析
- 臺州科技職業(yè)學院《物流規(guī)劃仿真》2023-2024學年第二學期期末試卷
- 浴池出兌合同協(xié)議
- 2025年遼寧能源控股集團所屬鐵法能源公司招聘筆試參考題庫含答案解析
- 跨境物流部門管理制度
- 防空掩體知識培訓課件
- 工業(yè)和信息化部產(chǎn)業(yè)發(fā)展促進中心招聘筆試真題2024
- 2025年醫(yī)保知識競賽題庫及答案:新政策調整下的醫(yī)保選擇
- 呼吸科知識解剖課件
- 幼兒園教育評估指南解讀
- 模擬雨的形成課件
- 多維數(shù)據(jù)循環(huán)嵌套分析-全面剖析
- 《旅游策劃實務》課件-《秦嶺北望 千古》長安西安五天四晚親子家庭定制游方案
評論
0/150
提交評論