2023屆江蘇南通市高考壓軸卷數學試卷含解析_第1頁
2023屆江蘇南通市高考壓軸卷數學試卷含解析_第2頁
2023屆江蘇南通市高考壓軸卷數學試卷含解析_第3頁
2023屆江蘇南通市高考壓軸卷數學試卷含解析_第4頁
2023屆江蘇南通市高考壓軸卷數學試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設復數滿足(為虛數單位),則復數的共軛復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知復數滿足,則的共軛復數是()A. B. C. D.3.“”是“函數的圖象關于直線對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.若,則的值為()A. B. C. D.5.在等差數列中,若,則()A.8 B.12 C.14 D.106.過橢圓的左焦點的直線過的上頂點,且與橢圓相交于另一點,點在軸上的射影為,若,是坐標原點,則橢圓的離心率為()A. B. C. D.7.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數字按照任意次序排成一行,拼成一個6位數,則產生的不同的6位數的個數為A.96 B.84 C.120 D.3608.已知函數,若對于任意的,函數在內都有兩個不同的零點,則實數的取值范圍為()A. B. C. D.9.使得的展開式中含有常數項的最小的n為()A. B. C. D.10.若復數是純虛數,則實數的值為()A.或 B. C. D.或11.已知定義在上的偶函數滿足,且在區間上是減函數,令,則的大小關系為()A. B.C. D.12.設集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數的圖像如圖所示,則該函數的最小正周期為________.14.已知復數,其中為虛數單位,若復數為純虛數,則實數的值是__.15.已知函數,則________;滿足的的取值范圍為________.16.已知數列滿足,,若,則數列的前n項和______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分數為,求的分布列和數學期望;(2)證明:數列是等比數列;(3)求甲在登山過程中,恰好登上第級臺階的概率.18.(12分)在極坐標系中,已知曲線C的方程為(),直線l的方程為.設直線l與曲線C相交于A,B兩點,且,求r的值.19.(12分)已知函數,其中為自然對數的底數,.(1)若曲線在點處的切線與直線平行,求的值;(2)若,問函數有無極值點?若有,請求出極值點的個數;若沒有,請說明理由.20.(12分)已知函數.(1)求函數的單調遞增區間;(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,,,求.21.(12分)如圖,三棱臺的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.22.(10分)已知函數,,且.(1)當時,求函數的減區間;(2)求證:方程有兩個不相等的實數根;(3)若方程的兩個實數根是,試比較,與的大小,并說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

先把變形為,然后利用復數代數形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內對應的點為,在第四象限故選:D【點睛】此題考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,屬于基礎題.2、B【解析】

根據復數的除法運算法則和共軛復數的定義直接求解即可.【詳解】由,得,所以.故選:B【點睛】本題考查了復數的除法的運算法則,考查了復數的共軛復數的定義,屬于基礎題.3、A【解析】

先求解函數的圖象關于直線對稱的等價條件,得到,分析即得解.【詳解】若函數的圖象關于直線對稱,則,解得,故“”是“函數的圖象關于直線對稱”的充分不必要條件.故選:A【點睛】本題考查了充分不必要條件的判斷,考查了學生邏輯推理,概念理解,數學運算的能力,屬于基礎題.4、C【解析】

根據,再根據二項式的通項公式進行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應用,考查了二項式展開式通項公式的應用,考查了數學運算能力5、C【解析】

將,分別用和的形式表示,然后求解出和的值即可表示.【詳解】設等差數列的首項為,公差為,則由,,得解得,,所以.故選C.【點睛】本題考查等差數列的基本量的求解,難度較易.已知等差數列的任意兩項的值,可通過構建和的方程組求通項公式.6、D【解析】

求得點的坐標,由,得出,利用向量的坐標運算得出點的坐標,代入橢圓的方程,可得出關于、、的齊次等式,進而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點.因為點在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點睛】本題考查橢圓離心率的求解,解答的關鍵就是要得出、、的齊次等式,充分利用點在橢圓上這一條件,圍繞求點的坐標來求解,考查計算能力,屬于中等題.7、B【解析】

2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數共個,其中含有2個10的排列數共個,所以產生的不同的6位數的個數為.故選B.8、D【解析】

將原題等價轉化為方程在內都有兩個不同的根,先求導,可判斷時,,是增函數;當時,,是減函數.因此,再令,求導得,結合韋達定理可知,要滿足題意,只能是存在零點,使得在有解,通過導數可判斷當時,在上是增函數;當時,在上是減函數;則應滿足,再結合,構造函數,求導即可求解;【詳解】函數在內都有兩個不同的零點,等價于方程在內都有兩個不同的根.,所以當時,,是增函數;當時,,是減函數.因此.設,,若在無解,則在上是單調函數,不合題意;所以在有解,且易知只能有一個解.設其解為,當時,在上是增函數;當時,在上是減函數.因為,方程在內有兩個不同的根,所以,且.由,即,解得.由,即,所以.因為,所以,代入,得.設,,所以在上是增函數,而,由可得,得.由在上是增函數,得.綜上所述,故選:D.【點睛】本題考查由函數零點個數求解參數取值范圍問題,構造函數法,導數法研究函數增減性與最值關系,轉化與化歸能力,屬于難題9、B【解析】二項式展開式的通項公式為,若展開式中有常數項,則,解得,當r取2時,n的最小值為5,故選B【考點定位】本題考查二項式定理的應用.10、C【解析】試題分析:因為復數是純虛數,所以且,因此注意不要忽視虛部不為零這一隱含條件.考點:純虛數11、C【解析】

可設,根據在上為偶函數及便可得到:,可設,,且,根據在上是減函數便可得出,從而得出在上單調遞增,再根據對數的運算得到、、的大小關系,從而得到的大小關系.【詳解】解:因為,即,又,設,根據條件,,;若,,且,則:;在上是減函數;;;在上是增函數;所以,故選:C【點睛】考查偶函數的定義,減函數及增函數的定義,根據單調性定義判斷一個函數單調性的方法和過程:設,通過條件比較與,函數的單調性的應用,屬于中檔題.12、C【解析】

解對數不等式求得集合,由此求得兩個集合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點睛】本小題主要考查對數不等式的解法,考查集合交集的概念和運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據圖象利用,先求出的值,結合求出,然后利用周期公式進行求解即可.【詳解】解:由,得,,,則,,,即,則函數的最小正周期,故答案為:8【點睛】本題主要考查三角函數周期的求解,結合圖象求出函數的解析式是解決本題的關鍵.14、2【解析】

由題,得,然后根據純虛數的定義,即可得到本題答案.【詳解】由題,得,又復數為純虛數,所以,解得.故答案為:2【點睛】本題主要考查純虛數定義的應用,屬基礎題.15、【解析】

首先由分段函數的解析式代入求值即可得到,分和兩種情況討論可得;【詳解】解:因為,所以,∵,∴當時,滿足題意,∴;當時,由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.【點睛】本題考查分段函數的性質的應用,分類討論思想,屬于基礎題.16、【解析】

,求得的通項,進而求得,得通項公式,利用等比數列求和即可.【詳解】由題為等差數列,∴,∴,∴,∴,故答案為【點睛】本題考查求等差數列數列通項,等比數列求和,熟記等差等比性質,熟練運算是關鍵,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、見解析【解析】

(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數學期望.(2)由題可得,所以,又,,所以,所以是以為首項,為公比的等比數列.(3)由(2)可得.18、【解析】

先將曲線C和直線l的極坐標方程化為直角坐標方程,可得圓心到直線的距離,再由勾股定理,計算即得.【詳解】以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,可得曲線C:()的直角坐標方程為,表示以原點為圓心,半徑為r的圓.由直線l的方程,化簡得,則直線l的直角坐標方程方程為.記圓心到直線l的距離為d,則,又,即,所以.【點睛】本題考查曲線和直線的極坐標方程化為直角坐標方程,是基礎題.19、(1)(2)沒有,理由見解析【解析】

(1)求導,研究函數在x=0處的導數,等于切線斜率,即得解;(2)對f(x)求導,構造,可證得,得到,即得解【詳解】(1)由題意得,∵曲線在點處的切線與直線平行,∴切線的斜率為,解得.(2)當時,,,設,則,則函數在區間上單調遞減,在區間上單調遞增,又函數,故恒成立,∴函數在定義域內單調遞增,函數不存在極值點.【點睛】本題考查了導數在切線問題和函數極值問題中的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.20、(1);(2)【解析】

(1)化簡得到,取,解得答案.(2),解得,根據余弦定理得到,再用一次余弦定理解得答案.【詳解】(1).取,解得.(2),因為,故,.根據余弦定理:,..【點睛】本題考查了三角恒等變換,三角函數單調性,余弦定理,意在考查學生對于三角函數知識的綜合應用.21、(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)取的中點為,連結,易證四邊形為平行四邊形,即,由于,為的中點,可得到,從而得到,即可證明平面,從而得到;(Ⅱ)易證,,兩兩垂直,以,,分別為,,軸,建立如圖所示的空間直角坐標系,求出平面的一個法向量為,設與平面所成角為,則,即可得到答案.【詳解】解:(Ⅰ)取的中點為,連結.由是三棱臺得,平面平面,從而.∵,∴,∴四邊形為平行四邊形,∴.∵,為的中點,∴,∴.∵平面平面,且交線為,平面,∴平面,而平面,∴.(Ⅱ)連結.由是正三角形,且為中點,則.由(Ⅰ)知,平面,,∴,,∴,,兩兩垂直.以,,分別為,,軸,建立如圖所示的空間直角坐標系.設,則,,,,∴,,.設平面的一個法向量為.由可得,.令,則,,∴.設與平面所成角為,則.【點睛】本題考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論