2022年福建省泉州市南安僑光中學高考考前模擬數(shù)學試題含解析_第1頁
2022年福建省泉州市南安僑光中學高考考前模擬數(shù)學試題含解析_第2頁
2022年福建省泉州市南安僑光中學高考考前模擬數(shù)學試題含解析_第3頁
2022年福建省泉州市南安僑光中學高考考前模擬數(shù)學試題含解析_第4頁
2022年福建省泉州市南安僑光中學高考考前模擬數(shù)學試題含解析_第5頁
免費預覽已結束,剩余15頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設全集,集合,則=()A. B. C. D.2.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還.”意思為有一個人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達目的地,請問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里3.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.904.若復數(shù)()在復平面內(nèi)的對應點在直線上,則等于()A. B. C. D.5.設集合,,若集合中有且僅有2個元素,則實數(shù)的取值范圍為A. B.C. D.6.已知點在雙曲線上,則該雙曲線的離心率為()A. B. C. D.7.復數(shù)滿足,則復數(shù)等于()A. B. C.2 D.-28.已知三棱柱()A. B. C. D.9.已知符號函數(shù)sgnxf(x)是定義在R上的減函數(shù),g(x)=f(x)﹣f(ax)(a>1),則()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]10.已知中,,則()A.1 B. C. D.11.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.12.已知復數(shù)(為虛數(shù)單位,),則在復平面內(nèi)對應的點所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.設定義域為的函數(shù)滿足,則不等式的解集為__________.14.若函數(shù)的圖像與直線的三個相鄰交點的橫坐標分別是,,,則實數(shù)的值為________.15.已知是第二象限角,且,,則____.16.在平面直角坐標系中,已知圓及點,設點是圓上的動點,在中,若的角平分線與相交于點,則的取值范圍是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)秉持“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念,為推動新能源汽車產(chǎn)業(yè)迅速發(fā)展,有必要調查研究新能源汽車市場的生產(chǎn)與銷售.下圖是我國某地區(qū)年至年新能源汽車的銷量(單位:萬臺)按季度(一年四個季度)統(tǒng)計制成的頻率分布直方圖.(1)求直方圖中的值,并估計銷量的中位數(shù);(2)請根據(jù)頻率分布直方圖估計新能源汽車平均每個季度的銷售量(同一組數(shù)據(jù)用該組中間值代表),并以此預計年的銷售量.18.(12分)如圖,在四棱錐中,底面是菱形,∠,是邊長為2的正三角形,,為線段的中點.(1)求證:平面平面;(2)若為線段上一點,當二面角的余弦值為時,求三棱錐的體積.19.(12分)在以為頂點的五面體中,底面為菱形,,,,二面角為直二面角.(Ⅰ)證明:;(Ⅱ)求二面角的余弦值.20.(12分)已知數(shù)列的前項和為,且滿足().(1)求數(shù)列的通項公式;(2)設(),數(shù)列的前項和.若對恒成立,求實數(shù),的值.21.(12分)已知在多面體中,平面平面,且四邊形為正方形,且//,,,點,分別是,的中點.(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.22.(10分)某社區(qū)服務中心計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶5元,售價每瓶7元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:攝氏度℃)有關.如果最高氣溫不低于25,需求量為600瓶;如果最高氣溫位于區(qū)間,需求量為500瓶;如果最高氣溫低于20,需求量為300瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫天數(shù)414362763以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;(2)設六月份一天銷售這種酸奶的利潤為(單位:元),當六月份這種酸奶一天的進貨量為(單位:瓶)時,的數(shù)學期望的取值范圍?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎題.2.B【解析】

人每天走的路程構成公比為的等比數(shù)列,設此人第一天走的路程為,計算,代入得到答案.【詳解】由題意可知此人每天走的路程構成公比為的等比數(shù)列,設此人第一天走的路程為,則,解得,從而可得,故.故選:.【點睛】本題考查了等比數(shù)列的應用,意在考查學生的計算能力和應用能力.3.A【解析】

利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應用,考查了學生概念理解,數(shù)據(jù)處理,數(shù)學運算的能力,屬于基礎題.4.C【解析】

由題意得,可求得,再根據(jù)共軛復數(shù)的定義可得選項.【詳解】由題意得,解得,所以,所以,故選:C.【點睛】本題考查復數(shù)的幾何表示和共軛復數(shù)的定義,屬于基礎題.5.B【解析】

由題意知且,結合數(shù)軸即可求得的取值范圍.【詳解】由題意知,,則,故,又,則,所以,所以本題答案為B.【點睛】本題主要考查了集合的關系及運算,以及借助數(shù)軸解決有關問題,其中確定中的元素是解題的關鍵,屬于基礎題.6.C【解析】

將點A坐標代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【點睛】此題考查雙曲線的標準方程和離心率的概念,屬于基礎題.7.B【解析】

通過復數(shù)的模以及復數(shù)的代數(shù)形式混合運算,化簡求解即可.【詳解】復數(shù)滿足,∴,故選B.【點睛】本題主要考查復數(shù)的基本運算,復數(shù)模長的概念,屬于基礎題.8.C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=9.A【解析】

根據(jù)符號函數(shù)的解析式,結合f(x)的單調性分析即可得解.【詳解】根據(jù)題意,g(x)=f(x)﹣f(ax),而f(x)是R上的減函數(shù),當x>0時,x<ax,則有f(x)>f(ax),則g(x)=f(x)﹣f(ax)>0,此時sgn[g(x)]=1,當x=0時,x=ax,則有f(x)=f(ax),則g(x)=f(x)﹣f(ax)=0,此時sgn[g(x)]=0,當x<0時,x>ax,則有f(x)<f(ax),則g(x)=f(x)﹣f(ax)<0,此時sgn[g(x)]=﹣1,綜合有:sgn[g(x)]=sgn(x);故選:A.【點睛】此題考查函數(shù)新定義問題,涉及函數(shù)單調性辨析,關鍵在于讀懂定義,根據(jù)自變量的取值范圍分類討論.10.C【解析】

以為基底,將用基底表示,根據(jù)向量數(shù)量積的運算律,即可求解.【詳解】,,.故選:C.【點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數(shù)量積運算,屬于中檔題.11.C【解析】

畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,

該幾何體的表面積:.故選C.【點睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關鍵.12.B【解析】

分別比較復數(shù)的實部、虛部與0的大小關系,可判斷出在復平面內(nèi)對應的點所在的象限.【詳解】因為時,所以,,所以復數(shù)在復平面內(nèi)對應的點位于第二象限.故選:B.【點睛】本題考查復數(shù)的幾何意義,考查學生的計算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)條件構造函數(shù)F(x),求函數(shù)的導數(shù),利用函數(shù)的單調性即可得到結論.【詳解】設F(x),則F′(x),∵,∴F′(x)>0,即函數(shù)F(x)在定義域上單調遞增.∵∴,即F(x)<F(2x)∴,即x>1∴不等式的解為故答案為:【點睛】本題主要考查函數(shù)單調性的判斷和應用,根據(jù)條件構造函數(shù)是解決本題的關鍵.14.4【解析】

由題可分析函數(shù)與的三個相鄰交點中不相鄰的兩個交點距離為,即,進而求解即可【詳解】由題意得函數(shù)的最小正周期,解得故答案為:4【點睛】本題考查正弦型函數(shù)周期的應用,考查求正弦型函數(shù)中的15.【解析】

由是第二象限角,且,可得,由及兩角和的正切公式可得的值.【詳解】解:由是第二象限角,且,可得,,由,可得,代入,可得,故答案為:.【點睛】本題主要考查同角三角函數(shù)的基本關系及兩角和的正切公式,相對不難,注意運算的準確性.16.【解析】

由角平分線成比例定理推理可得,進而設點表示向量構建方程組表示點P坐標,代入圓C方程即可表示動點Q的軌跡方程,再由將所求視為該圓上的點與原點間的距離,所以其最值為圓心到原點的距離加減半徑.【詳解】由題可構建如圖所示的圖形,因為AQ是的角平分線,由角平分線成比例定理可知,所以.設點,點,即,則,所以.又因為點是圓上的動點,則,故點Q的運功軌跡是以為圓心為半徑的圓,又即為該圓上的點與原點間的距離,因為,所以故答案為:【點睛】本題考查與圓有關的距離的最值問題,常常轉化到圓心的距離加減半徑,還考查了求動點的軌跡方程,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),中位數(shù)為;(2)新能源汽車平均每個季度的銷售量為萬臺,以此預計年的銷售量約為萬臺.【解析】

(1)根據(jù)頻率分布直方圖中所有矩形面積之和為可計算出的值,利用中位數(shù)左邊的矩形面積之和為可求得銷量的中位數(shù)的值;(2)利用每個矩形底邊的中點值乘以相應矩形的面積,相加可得出銷量的平均數(shù),由此可預計年的銷售量.【詳解】(1)由于頻率分布直方圖的所有矩形面積之和為,則,解得,由于,因此,銷量的中位數(shù)為;(2)由頻率分布直方圖可知,新能源汽車平均每個季度的銷售量為(萬臺),由此預測年的銷售量為萬臺.【點睛】本題考查利用頻率分布直方圖求參數(shù)、中位數(shù)以及平均數(shù)的計算,考查計算能力,屬于基礎題.18.(1)見解析;(2).【解析】

(1)先證明,可證平面,再由可證平面,即得證;(2)以為坐標原點,建立如圖所示空間直角坐標系,設,求解面的法向量,面的法向量,利用二面角的余弦值為,可求解,轉化即得解.【詳解】(1)證明:因為是正三角形,為線段的中點,所以.因為是菱形,所以.因為,所以是正三角形,所以,所以平面.又,所以平面.因為平面,所以平面平面.(2)由(1)知平面,所以,.而,所以,.又,所以平面.以為坐標原點,建立如圖所示空間直角坐標系.則.于是,,.設面的一個法向量,由得令,則,即.設,易得,.設面的一個法向量,由得令,則,,即.依題意,即,令,則,即,即.所以.【點睛】本題考查了空間向量和立體幾何綜合,考查了面面垂直的判斷,二面角的向量求解,三棱錐的體積等知識點,考查了學生空間想象,邏輯推理,數(shù)學運算的能力,屬于中檔題.19.(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)連接交于點,取中點,連結,證明平面得到答案.(Ⅱ)分別以為軸建立如圖所示的空間直角坐標系,平面的法向量為,平面的法向量為,計算夾角得到答案.【詳解】(Ⅰ)連接交于點,取中點,連結因為為菱形,所以.因為,所以.因為二面角為直二面角,所以平面平面,且平面平面,所以平面所以因為所以是平行四邊形,所以.所以,所以,所以平面,又平面,所以.(Ⅱ)由(Ⅰ)可知兩兩垂直,分別以為軸建立如圖所示的空間直角坐標系.設設平面的法向量為,由,取.平面的法向量為.所以二面角余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象能力.20.(1)(2),.【解析】

(1)根據(jù)數(shù)列的通項與前n項和的關系式,即求解數(shù)列的通項公式;(2)由(1)可得,利用等比數(shù)列的前n項和公式和裂項法,求得,結合題意,即可求解.【詳解】(1)由題意,當時,由,解得;當時,可得,即,顯然當時上式也適合,所以數(shù)列的通項公式為.(2)由(1)可得,所以.因為對恒成立,所以,.【點睛】本題主要考查了數(shù)列的通項公式的求解,等差數(shù)列的前n項和公式,以及裂項法求和的應用,其中解答中熟記等差、等比數(shù)列的通項公式和前n項和公式,以及合理利用“裂項法”求和是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.21.(1)證明見解析;(2).【解析】

(1)構造直線所在平面,由面面平行推證線面平行;(2)以為坐標原點,建立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論