2023年晉中職業技術學院高職單招(數學)試題庫含答案解析_第1頁
2023年晉中職業技術學院高職單招(數學)試題庫含答案解析_第2頁
2023年晉中職業技術學院高職單招(數學)試題庫含答案解析_第3頁
2023年晉中職業技術學院高職單招(數學)試題庫含答案解析_第4頁
2023年晉中職業技術學院高職單招(數學)試題庫含答案解析_第5頁
已閱讀5頁,還剩40頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區的她2023年晉中職業技術學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.直線kx-y+1=3k,當k變動時,所有直線都通過定點()

A.(0,0)

B.(0,1)

C.(3,1)

D.(2,1)答案:C2.設求證:答案:證明見解析解析:證明:∵

∴∴,∴本題利用,對中每項都進行了放縮,從而得到可以求和的數列,達到化簡的目的。3.如果執行程序框圖,那么輸出的S=()A.2450B.2500C.2550D.2652答案:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是累加并輸出:S=2×1+2×2+…+2×50的值.∵S=2×1+2×2+…+2×50=2×1+502×50=2550故選C4.某航空公司經營A,B,C,D這四個城市之間的客運業務,它們之間的直線距離的部分機票價格如下:AB為2000元;AC為1600元;AD為2500元;CD為900元;BC為1200元,若這家公司規定的機票價格與往返城市間的直線距離成正比,則BD間直線距離的票價為(設這四個城在同一水平面上)()

A.1500元

B.1400元

C.1200元

D.1000元答案:A5.化簡的結果是()

A.aB.C.a2D.答案:B解析:分析:指數函數的性質6.從裝有2個紅球和2個白球的口袋內,任取2個球,那么下面互斥而不對立的兩個事件是()

A.恰有1個白球;恰有2個白球

B.至少有1個白球;都是白球

C.至少有1個白球;

至少有1個紅球

D.至少有1個白球;

都是紅球答案:A7.設O是正方形ABCD的中心,向量,,,是(

A.平行向量

B.有相同終點的向量

C.相等向量

D.模相等的向量答案:D8.直線m的傾斜角為30°,則此直線的斜率等于()A.12B.1C.33D.3答案:因為直線的斜率k和傾斜角θ的關系是:k=tanθ∴傾斜角為30°時,對應的斜率k=tan30°=33故選:C.9.已知三個數a=60.7,b=0.76,c=log0.76,則a,b,c從小到大的順序為______.答案:因為a=60.7>60=1,b=0.76<0.70=1,且b>0,c=log0.76<0,所以c<b<a.故為c<b<a.10.乘積(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)的展開式中,一共有多少項?答案:因為:從第一個括號中選一個字母有3種方法,從第二個括號中選一個字母有4種方法,從第三個括號中選一個字母有5種方法.故根據乘法計數原理可知共有N=3×4×5=60(項).11.已知f(x)=,求不等式x+(x+2)·f(x+2)≤5的解集。答案:解:原不等式等價于或解得或即故不等式的解集為。12.直線(a+1)x-(2a+5)y-6=0必過一定點,定點的坐標為(

)。答案:(-4,-2)13.O、A、B、C為空間四個點,又為空間的一個基底,則()

A.O、A、B、C四點共線

B.O、A、B、C四點共面,但不共線

C.O、A、B、C四點中任意三點不共線

D.O、A、B、C四點不共面答案:D14.下圖是由A、B、C、D中的哪個平面圖旋轉而得到的(

)答案:A15.已知偶函數f(x)的圖象與x軸有五個公共點,那么方程f(x)=0的所有實根之和為______.答案:∵函數y=f(x)是偶函數∴其圖象關于y軸對稱∴其圖象與x軸有五個交點也關于y軸對稱其中一個為0.另四個關于y軸對稱.∴方程f(x)=0的所有實根之和為0故為:0.16.以橢圓的焦點為頂點、頂點為焦點的雙曲線方程是()

A.

B.

C.

D.答案:C17.設a∈(0,1)∪(1,+∞),對任意的x∈(0,12],總有4x≤logax恒成立,則實數a的取值范圍是______.答案:∵a∈(0,1)∪(1,+∞),當0<x≤12時,函數y=4x的圖象如下圖所示:∵對任意的x∈(0,12],總有4x≤logax恒成立,若不等式4x<logax恒成立,則y=logax的圖象恒在y=4x的圖象的上方(如圖中虛線所示)∵y=logax的圖象與y=4x的圖象交于(12,2)點時,a=22,故虛線所示的y=logax的圖象對應的底數a應滿足22<a<1.故為:(22,1).18.4個人各寫一張賀年卡,集中后每人取一張別人的賀年卡,共有______種取法.答案:根據分類計數問題,可以列舉出所有的結果,1甲乙互換,丙丁互換2甲丙互換,乙丁互換3甲丁互換,乙丙互換4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通過列舉可以得到共有9種結果,故為:919.設F1,F2為定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則動點M的軌跡是()A.橢圓B.直線C.圓D.線段答案:對于在平面內,若動點M到F1、F2兩點的距離之和等于6,而6正好等于兩定點F1、F2的距離,則動點M的軌跡是以F1,F2為端點的線段.故選D.20.選修4-2:矩陣與變換

已知矩陣M=0110,N=0-110.在平面直角坐標系中,設直線2x-y+1=0在矩陣MN對應的變換作用下得到曲線F,求曲線F的方程.答案:由題設得MN=01100-111=100-1.…(3分)設(x,y)是直線2x-y+1=0上任意一點,點(x,y)在矩陣MN對應的變換作用下變為(x′,y′),則有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因為點(x,y)在直線2x-y+1=0上,從而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲線F的方程為2x+y+1=0.

…(10分)21.如圖,△ABC中,AD=2DB,AE=3EC,CD與BE交于F,若AF=xAB+yAC,則()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:過點F作FM∥AC、FN∥AB,分別交AB、AC于點M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四邊形AMFN是平行四邊形∴由向量加法法則,得AF=13AB+12AC∵AF=xAB+yAC,∴根據平面向量基本定理,可得x=13,y=12故選:A22.若定義運算a⊕b=b,a<ba,a≥b則函數f(x)=2x⊕(12)x的值域為______(用區間表示).答案:由題意畫出f(x)=2x?(12)x的圖象(實線部分),由圖可知f(x)的值域為[1,+∞).故為:[1,+∞).23.下列圖形中不一定是平面圖形的是()

A.三角形

B.四邊相等的四邊形

C.梯形

D.平行四邊形答案:B24.設直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()

A.

B.

C.

D.答案:C25.在極坐標系中,曲線ρ=4cosθ圍成的圖形面積為()

A.π

B.4

C.4π

D.16答案:C26.已知a,b

,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.27.隋機變量X~B(6,),則P(X=3)=()

A.

B.

C.

D.答案:C28.如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點F是AE的中點.求AB與平面BDF所成角的正弦值.答案:AB與平面BDF所成角的正弦值為.解析:以點B為原點,BA、BC、BE所在的直線分別為x,y,z軸,建立如圖所示的空間直角坐標系,則B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(1,0,1).∴=(0,2,1),=(1,-2,0).設平面BDF的一個法向量為n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).設AB與平面BDF所成的角為,則法向量n與的夾角為-,∴cos(-)===,即sin=,故AB與平面BDF所成角的正弦值為.29.若P(A∪B)=P(A)+P(B)=1,則事件A與事件B的關系是()

A.互斥事件

B.對立事件

C.不是互斥事件

D.前者都不對答案:D30.在空間有三個向量AB、BC、CD,則AB+BC+CD=()A.ACB.ADC.BDD.0答案:如圖:AB+BC+CD=AC+CD=AD.故選B.31.正方形ABCD中,AB=1,分別以A、C為圓心作兩個半徑為R、r(R>r)的圓,當R、r滿足條件______時,⊙A與⊙C有2個交點(

A.R+r>

B.R-r<<R+r

C.R-r>

D.0<R-r<答案:B32.(選做題)

設集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實數a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區間(﹣∞,1)∪(4,+∞)內直接求解情況比較多,考慮補集設全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內∴,∴,∴,∴∴實數a的取值范圍為.33.如圖,已知雙曲線以長方形ABCD的頂點A,B為左、右焦點,且過C,D兩頂點.若AB=4,BC=3,則此雙曲線的標準方程為______.答案:由題意可得點OA=OB=2,AC=5設雙曲線的標準方程是x2a2-y2b2=1.則2a=AC-BC=5-3=2,所以a=1.所以b2=c2-a2=4-1=3.所以雙曲線的標準方程是x2-y23=1.故為:x2-y23=134.在⊙O中,弦AB=1.8cm,圓周角∠ACB=30°,則⊙O的直徑等于()

A.3.2cm

B.3.4cm

C.3.6cm

D.4.0cm答案:C35.已知實數x,y滿足3x+4y+10=0,那么x2+y2的最小值為______.答案:設P(x,y),則|OP|=x2+y2,即x2+y2的幾何意義表示為直線3x+4y+10=0上的點P到原點的距離的最小值.則根據點到直線的距離公式得點P到直線3x+4y+10=0的距離d=|10|32+42=105=2.故為:2.36.O是正六邊形ABCDE的中心,且OA=a,OB=b,AB=c,在以A,B,C,D,E,O為端點的向量中:

(1)與a相等的向量有

______;

(2)與b相等的向量有

______;

(3)與c相等的向量有

______.答案:如圖,在O是正六邊形ABCDE的中心,以A,B,C,D,E,O為端點的向量中(1)與a相等的向量有EF,DO,CB;(2)與b相等的向量有DC,EO,FA;(3)與c相等的向量有FO,OC,ED.故三個空依次應填EF,DO,CB;DC,EO,FA;FO,OC,ED.37.某校對文明班的評選設計了a,b,c,d,e五個方面的多元評價指標,并通過經驗公式樣S=ab+cd+1e來計算各班的綜合得分,S的值越高則評價效果越好,若某班在自測過程中各項指標顯示出0<c<d<e<b<a,則下階段要把其中一個指標的值增加1個單位,而使得S的值增加最多,那么該指標應為()A.aB.bC.cD.d答案:因a,b,cde都為正數,故分子越大或分母越小時,S的值越大,而在分子都增加1的前提下,分母越小時,S的值增長越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個單位會使得S的值增加最多.故選C.38.現有10個保送上大學的名額,分配給7所學校,每校至少有1個名額,名額分配的方法共有______種(用數字作答).答案:根據題意,將10個名額,分配給7所學校,每校至少有1個名額,可以轉化為10個元素之間有9個間隔,要求分成7份,每份不空;相當于用6塊檔板插在9個間隔中,共有C96=84種不同方法.所以名額分配的方法共有84種.39.在吸煙與患肺病這兩個分類變量的計算中,下列說法正確的是()

①若K2的觀測值滿足K2≥6.635,我們有99%的把握認為吸煙與患肺病有關系,那么在100個吸煙的人中必有99人患有肺??;

②從獨立性檢驗可知有99%的把握認為吸煙與患病有關系時,我們說某人吸煙,那么他有99%的可能患有肺??;

③從統計量中得知有95%的把握認為吸煙與患肺病有關系,是指有5%的可能性使得推斷出現錯誤.

A.①

B.①③

C.③

D.②答案:C40.如圖,AB是平面a的斜線段,A為斜足,若點P在平面a內運動,使得△ABP的面積為定值,則動點P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:本題其實就是一個平面斜截一個圓柱表面的問題,因為三角形面積為定值,以AB為底,則底邊長一定,從而可得P到直線AB的距離為定值,分析可得,點P的軌跡為一以AB為軸線的圓柱面,與平面α的交線,且α與圓柱的軸線斜交,由平面與圓柱面的截面的性質判斷,可得P的軌跡為橢圓.41.下列各圖中,可表示函數y=f(x)的圖象的只可能是()A.

B.

C.

D.

答案:根據函數的定義知:自變量取唯一值時,因變量(函數)有且只有唯一值與其相對應.∴從圖象上看,任意一條與x軸垂直的直線與函數圖象的交點最多只能有一個交點.從而排除A,B,C,故選D.42.已知正三角形的外接圓半徑為63cm,求它的邊長.答案:設正三角形的邊長為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長為18cm.43.設A、B、C、D是半徑為r的球面上的四點,且滿足AB⊥AC、AD⊥AC、AB⊥AD,則S△ABC+S△ABD+S△ACD的最大值是[

]A、r2

B、2r2

C、3r2

D、4r2答案:B44.已知點P在曲線C1:x216-y29=1上,點Q在曲線C2:(x-5)2+y2=1上,點R在曲線C3:(x+5)2+y2=1上,則|PQ|-|PR|的最大值是()A.6B.8C.10D.12答案:由雙曲線的知識可知:C1x216-y29=1的兩個焦點分別是F1(-5,0)與F2(5,0),且|PF1|+|PF2|=8而這兩點正好是兩圓(x+5)2+y2=1和(x-5)2+y2=1的圓心,兩圓(x+5)2+y2=4和(x-5)2+y2=1的半徑分別是r1=1,r2=1,∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,∴|PQ|-|PR|的最大值為:(|PF1|+1)-(|PF2|-1)=|PF1|+|PF2|+2=8+2=10,故選C45.某種細菌在培養過程中,每15分鐘分裂一次(由一個分裂成兩個),這種細菌由1個繁殖成4096個需經過()A.12小時B.4小時C.3小時D.2小時答案:設共分裂了x次,則有2x=4

096,∴2x=212,又∵每次為15分鐘,∴共15×12=180(分鐘),即3個小時.故為C46.計算:x10÷x5=______.答案:根據有理數指數冪的運算性質:x10÷x5=x5故為:x547.用“斜二測畫法”作正三角形ABC的水平放置的直觀圖△A′B′C′,則△A′B′C′與△ABC的面積之比為______.答案:設正三角形的標出為:1,正三角形的高為:32,所以正三角形的面積為:34;按照“斜二測畫法”畫法,△A′B′C′的面積是:12×1×34×sin45°=616;所以△A′B′C′與△ABC的面積之比為:61634=24,故為:2448.某地位于甲、乙兩條河流的交匯處,根據統計資料預測,今年汛期甲河流發生洪水的概率為0.25,乙河流發生洪水的概率為0.18(假設兩河流發生洪水與否互不影響).現有一臺大型設備正在該地工作,為了保護設備,施工部門提出以下三種方案:

方案1:運走設備,此時需花費4000元;

方案2:建一保護圍墻,需花費1000元,但圍墻只能抵御一個河流發生的洪水,當兩河流同時發生洪水時,設備仍將受損,損失約56

000元;

方案3:不采取措施,此時,當兩河流都發生洪水時損失達60000元,只有一條河流發生洪水時,損失為10000元.

(1)試求方案3中損失費ξ(隨機變量)的分布列;

(2)試比較哪一種方案好.答案:(1)在方案3中,記“甲河流發生洪水”為事件A,“乙河流發生洪水”為事件B,則P(A)=0.25,P(B)=0.18,所以,有且只有一條河流發生洪水的概率為P(A?.B+.A?B)=P(A)?P(.B)+P(.A)?P(B)=0.34,兩河流同時發生洪水的概率為P(A?B)=0.045,都不發生洪水的概率為P(.A?.B)=0.75×0.82=0.615,設損失費為隨機變量ξ,則ξ的分布列為:(2)對方案1來說,花費4000元;對方案2來說,建圍墻需花費1000元,它只能抵御一條河流的洪水,但當兩河流都發生洪水時,損失約56000元,而兩河流同時發生洪水的概率為P=0.25×0.18=0.045.所以,該方案中可能的花費為:1000+56000×0.045=3520(元).對于方案來說,損失費的數學期望為:Eξ=10000×0.34+60000×0.045=6100(元),比較可知,方案2最好,方案1次之,方案3最差.49.如果隨機變量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,則P(ξ>2)等于()

A.0.1

B.0.2

C.0.3

D.0.4答案:A50.一個總體中有100個個體,隨機編號為0,1,2,3,…,99,依編號順序平均分成10個小組,組號依次為1,2,3,…10.現用系統抽樣方法抽取一個容量為10的樣本,規定如果在第1組隨機抽取的號碼為m,那么在第k組中抽取的號碼個位數字與m+k號碼的個位數字相同,若m=6,則在第7組中抽取的號碼是()

A.66

B.76

C.63

D.73答案:C第2卷一.綜合題(共50題)1.已知拋物線C的參數方程為x=8t2y=8t(t為參數),設拋物線C的焦點為F,準線為l,P為拋物線上一點,PA⊥l,A為垂足,如果直線AF的斜率為-3,那么|PF|=______.答案:把拋物線C的參數方程x=8t2y=8t(t為參數),消去參數化為普通方程為y2=8x.故焦點F(2,0),準線方程為x=-2,再由直線FA的斜率是-3,可得直線FA的傾斜角為120°,設準線和x軸的交點為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點A(0,43),把y=43代入拋物線求得x=6,∴點P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.2.到兩定點A(0,0),B(3,4)距離之和為5的點的軌跡是()

A.橢圓

B.AB所在直線

C.線段AB

D.無軌跡答案:C3.設方程lgx+x=3的實數根為x0,則x0所在的一個區間是()A.(3,+∝)B.(2,3)C.(1,2)D.(0,1)答案:由lgx+x=3得:lgx=3-x.分別畫出等式:lgx=3-x兩邊對應的函數圖象:如圖.由圖知:它們的交點x0在區間(2,3)內,故選B.4.已知全集U=R,A?U,B?U,如果命題P:2∈A∪B,則命題非P是()A.2?AB.2∈(CUA)C.2∈(CUA)∩(CUB)D.2∈(CUA)∪(CUB)答案:命題P:2∈A∪B,∴┐p為2∈(CUA)∩(CUB)故選C5.甲、乙兩人投籃,投中的概率分別為0.6,0.7,若兩人各投2次,則兩人都投中1次的概率為______.答案:兩人都投中1次的概率為C210.6×0.4×C210.7×0.3=0.2016故為:0.20166.如圖,在空間直角坐標系中,已知直三棱柱的頂點A在x軸上,AB平行于y軸,側棱AA1平行于z軸.當頂點C在y軸正半軸上運動時,以下關于此直三棱柱三視圖的表述正確的是()

A.該三棱柱主視圖的投影不發生變化

B.該三棱柱左視圖的投影不發生變化

C.該三棱柱俯視圖的投影不發生變化

D.該三棱柱三個視圖的投影都不發生變化

答案:B7.以下四組向量中,互相平行的是.()

(1)=(1,2,1),=(1,-2,3);

(2)=(8,4,-6),=(4,2,-3);

(3)=(0,1,-1),=(0,-3,3);

(4)=(-3,2,0),=(4,-3,3).

A.(1)(2)

B.(2)(3)

C.(2)(4)

D.(1)(3)答案:B8.已知P(x,y)是橢圓x24+y2=1上的點,求M=x+2y的取值范圍.答案:∵x24+y2=1的參數方程是x=2cosθy=sinθ(θ是參數)∴設P(2cosθ,sinθ)(4分)∴M=x+2y=2cosθ+2sinθ=22sin(θ+π4)

(7分)∴M=x+2y的取值范圍是[-22,22].(10分)9.(1+x2)5的展開式中x2的系數()A.10B.5C.52D.1答案:含x2項為C25(x2)2=10×x24=52x2,故選項為為C.10.給出20個數:87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個求和問題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.11.若直線

3x+y+a=0過圓x2+y2+2x-4y=0的圓心,則a的值為()

A.-1

B.1

C.3

D.-3答案:B12.如圖,I表示南北方向的公路,A地在公路的正東2km處,B地在A地北偏東60°方向2km處,河流沿岸PQ(曲線)上任一點到公路l和到A地距離相等,現要在河岸PQ上選一處M建一座碼頭,向A,B兩地轉運貨物,經測算從M到A,B修建公路的費用均為a萬元/km,那么修建這兩條公路的總費用最低是(單位萬元)()

A.(2+)a

B.5a

C.2(+1)a

D.6a

答案:B13.已知a=(a1,a2),b=(b1,b2),丨a丨=5,丨b丨=6,a?b=30,則a1+a2b1+b2=______.答案:因為丨a丨=5,丨b丨=6,a?b=30,又a?b=|a|?|b|cos<a,b>=30,即cos<a,b>=1,所以a,b同向共線.設b=ka,(k>0).則b1=ka1,b2=ka2,所以|b|=k|a|,所以k=65,所以a1+a2b1+b2=a1+a2k(a1+a2)=1k=56.故為:56.14.下面的結構圖,總經理的直接下屬是()

A.總工程師和專家辦公室

B.開發部

C.總工程師、專家辦公室和開發部

D.總工程師、專家辦公室和所有七個部答案:C15.用反證法證明命題“若a、b∈N,ab能被2整除,則a,b中至少有一個能被2整除”,那么反設的內容是______.答案:根據用反證法證明數學命題的步驟,應先假設要證命題的否定成立,而要證命題的否定為:“a,b都不能被2整除”,故為:a、b都不能被2整除.16.兩條互相平行的直線分別過點A(6,2)和B(-3,-1),并且各自繞著A,B旋轉,如果兩條平行直線間的距離為d.

求:

(1)d的變化范圍;

(2)當d取最大值時兩條直線的方程.答案:(1)方法一:①當兩條直線的斜率不存在時,即兩直線分別為x=6和x=-3,則它們之間的距離為9.…(2分)②當兩條直線的斜率存在時,設這兩條直線方程為l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)綜合①②可知,所求d的變化范圍為(0,310].方法二:如圖所示,顯然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的變化范圍為(0,310].(2)由圖可知,當d取最大值時,兩直線垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直線的斜率為-3.故所求的直線方程分別為y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)17.三個數a=0.32,b=log20.3,c=20.3之間的大小關系是()A.a<c<bB.a<b<cC.b<a<cD.b<c<a答案:由對數函數的性質可知:b=log20.3<0,由指數函數的性質可知:0<a<1,c>1∴b<a<c故選C18.如圖,在直角坐標系中,A,B,C三點在x軸上,原點O和點B分別是線段AB和AC的中點,已知AO=m(m為常數),平面上的點P滿足PA+PB=6m.

(1)試求點P的軌跡C1的方程;

(2)若點(x,y)在曲線C1上,求證:點(x3,y22)一定在某圓C2上;

(3)過點C作直線l,與圓C2相交于M,N兩點,若點N恰好是線段CM的中點,試求直線l的方程.答案:(1)由題意可得點P的軌跡C1是以A,B為焦點的橢圓.…(2分)且半焦距長c=m,長半軸長a=3m,則C1的方程為x29m2+y28m2=1.…(5分)(2)若點(x,y)在曲線C1上,則x29m2+y28m2=1.設x3=x0,y22=y0,則x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以點(x3,y22)一定在某一圓C2上.…(10分)(3)由題意C(3m,0).…(11分)設M(x1,y1),則x12+y12=m2.…①因為點N恰好是線段CM的中點,所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②聯立①②,解得x1=-m,y1=0.…(15分)故直線l有且只有一條,方程為y=0.…(16分)(若只寫出直線方程,不說明理由,給1分)19.曲線y=log2x在M=0110作用下變換的結果是曲線方程______.答案:設P(x,y)是曲線y=log2x上的任一點,P1(x′,y′)是P(x,y)在矩陣M=0110對應變換作用下新曲線上的對應點,則x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)將x=y′y=x′代入曲線y=log2x,得x′=log2y′,(8分)即y′=2x′曲線y=log2x在M=0110作用下變換的結果是曲線方程y=2x故為:y=2x20.已知雙曲線x2-y22=1,經過點M(1,1)能否作一條直線l,使直線l與雙曲線交于A、B,且M是線段AB的中點,若存在這樣的直線l,求出它的方程;若不存在,說明理由.答案:設過點M(1,1)的直線方程為y=k(x-1)+1或x=1(1)當k存在時有y=k(x-1)+1x2

-y22=1得(2-k2)x2+(2k2-2k)x-k2+2k-3=0

(1)當直線與雙曲線相交于兩個不同點,則必有△=(2k2-2k)2-4(2-k2)(-k2+2k-3)>0,k<32

又方程(1)的兩個不同的根是兩交點A、B的橫坐標∴x1+x2=2(k-k2)2-k2

又M(1,1)為線段AB的中點∴x1+x22=1

即k-k22-k2=1

k=2

∴k=2,使2-k2≠0但使△<0因此當k=2時,方程(1)無實數解故過點m(1,1)與雙曲線交于兩點A、B且M為線段AB中點的直線不存在.(2)當x=1時,直線經過點M但不滿足條件,綜上,符合條件的直線l不存在21.若a=(1,2,-2),b=(1,0,2),則(a-b)?(a+2b)=______.答案:∵a=(1,2,-2),b=(1,0,2),∴a-b=(0,2,-4),a+2b=(3,2,2).∴(a-b)?(a+2b)=0×3+2×2-4×2=-4.故為-4.22.在平面直角坐標系xOy中,點P的坐標為(-1,1),若取原點O為極點,x軸正半軸為極軸,建立極坐標系,則在下列選項中,不是點P極坐標的是()

A.()

B.()

C.()

D.()答案:D23.已知P(4,-9),Q(-2,3)且Y軸與線段PQ交于M,則Q分的比為()

A.-2

B.-

C.

D.3答案:B24.已知平面上的向量PA、PB滿足|PA|2+|PB|2=4,|AB|=2,設向量PC=2PA+PB,則|PC|的最小值是

______.答案:|PA|2+|PB|2=4,|AB|=2∴|PA|2+|PB|2=|AB|2∴PA?PB=0∴PC2=4PA2+4PA?PB+PB2=3PA2+4≥4∴|PC|≥2故為2.25.用數學歸納法證明不等式成立,起始值至少應取為()

A.7

B.8

C.9

D.10答案:B26.參數方程為t為參數)表示的曲線是()

A.一條直線

B.兩條直線

C.一條射線

D.兩條射線答案:D27.已知||=3,A、B分別在x軸和y軸上運動,O為原點,則動點P的軌跡方程是()

A.

B.

C.

D.答案:B28.某廠一批產品的合格率是98%,檢驗單位從中有放回地隨機抽取10件,則計算抽出的10件產品中正品數的方差是______.答案:用X表示抽得的正品數,由于是有放回地隨機抽取,所以X服從二項分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故為:0.196.29.已知、分別是與x軸、y軸方向相同的單位向量,且=-3+6,=-6+4,=--6,則一定共線的三點是()

A.A,B,C

B.A,B,D

C.A,C,D

D.B,C,D答案:C30.已知M和N分別是四面體OABC的邊OA,BC的中點,且,若=a,=b,=c,則用a,b,c表示為()

A.

B.

C.

D.

答案:B31.如圖,四邊形ABCD內接于圓O,且AC、BD交于點E,則此圖形中一定相似的三角形有()對.

A.0

B.3

C.2

D.1

答案:C32.若圓O1方程為(x+1)2+(y+1)2=4,圓O2方程為(x-3)2+(y-2)2=1,則方程(x+1)2+(y+1)2-4=(x-3)2+(y-2)2-1表示的軌跡是()

A.經過兩點O1,O2的直線

B.線段O1O2的中垂線

C.兩圓公共弦所在的直線

D.一條直線且該直線上的點到兩圓的切線長相等答案:D33.為了參加奧運會,對自行車運動員甲、乙兩人在相同的條件下進行了6次測試,測得他們的最大速度的數據如表所示:

甲273830373531乙332938342836請判斷:誰參加這項重大比賽更合適,并闡述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(

4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙

(10分)乙參加更合適

(12分)34.實數變量m,n滿足m2+n2=1,則坐標(m+n,mn)表示的點的軌跡是()

A.拋物線

B.橢圓

C.雙曲線的一支

D.拋物線的一部分答案:A35.P是直線3x+y+1=0上一點,P到點Q(0,2)距離的最小值是______.答案:過點Q作直線的垂線段,當P是垂足時,線段PQ最短,故最小距離是點Q(0,2)到直線3x+y+1=0的距離d,d=|0+2+1|3+1=32=1.5.∴P到點Q(0,2)距離的最小值是1.5;故為1.5.36.若直線l經過點A(-1,1),且一個法向量為n=(3,3),則直線方程是______.答案:設直線的方向向量m=(1,k)∵直線l一個法向量為n=(3,3)∴m?n=0∴k=-1∵直線l經過點A(-1,1)∴直線l的方程為y-1=(-1)×(x+1)即x+y=0故為x+y=037.如圖,AB為⊙O的直徑,弦AC、BD交于點P,若AP=5,PC=3,DP=5,則AB=______.

答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB為直徑,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故為:1038.設函數f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故選B.39.用數學歸納法證明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)答案:證明:①n=1時,左邊=2,右邊=2,等式成立;②假設n=k時,結論成立,即:(k+1)+(k+2)+…+(k+k)=k(3k+1)2則n=k+1時,等式左邊=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)=k(3k+1)2+3k+2=(k+1)(3k+4)2故n=k+1時,等式成立由①②可知:(n+1)+(n+2)+…+(n+n)=n(3n+1)2(n∈N*)成立40.敘述并證明勾股定理.答案:證明:如圖左邊的正方形是由1個邊長為a的正方形和1個邊長為b的正方形以及4個直角邊分別為a、b,斜邊為c的直角三角形拼成的.右邊的正方形是由1個邊長為c的正方形和4個直角邊分別為a、b,斜邊為c的直角三角形拼成的.因為這兩個正方形的面積相等(邊長都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化簡得a2+b2=c2.下面是一個錯誤證法:勾股定理:直角三角形的兩直角邊的平方和等于斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達哥拉斯定理或畢氏定理證明:作兩個全等的直角三角形,設它們的兩條直角邊長分別為a、b(b>a),斜邊長為c.再做一個邊長為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點在一條直線上.過點Q作QP∥BC,交AC于點P.過點B作BM⊥PQ,垂足為M;再過點F作FN⊥PQ,垂足為N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一個矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可證Rt△QNF≌Rt△AEF.即a2+b2=c241.如圖,四邊形ABCD是圓O的內接四邊形,延長AB和DC相交于點P.若PB=1,PD=3,則BCAD的值為______.答案:因為A,B,C,D四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故為:13.42.有50件產品編號從1到50,現在從中抽取抽取5件檢驗,用系統抽樣確定所抽取的編號為()

A.5,10,15,20,25

B.5,15,20,35,40

C.5,11,17,23,29

D.10,20,30,40,50答案:D43.設a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,則實數m,n的值分別為______.答案:因為a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,根據空間向量平行的坐標表示公式,

所以24=2m-32m+124=n+23n-2,解得:m=12,n=6.故為:m=12,n=6.44.如圖,在梯形ABCD中,對角線AC和BD交于點O,E、F分別是AC和BD的中點,分別寫出

(1)圖中與EF、CO共線的向量;

(2)與EA相等的向量.答案:(1)由圖可知,與EF共線的向量有:CD、AB;與CO共線的向量有:CE、CA、OE、OA、EA;(2)由E為CA的中點可知,CE=EA,即與EA相等的向量為CE;45.籃球運動員在比賽中每次罰球命中得1分,罰不中得0分.已知某運動員罰球命中的概率為0.7,求

(1)他罰球1次的得分X的數學期望;

(2)他罰球2次的得分Y的數學期望;

(3)他罰球3次的得分η的數學期望.答案:(1)X的取值為1,2,則因為P(X=1)=0.7,P(X=0)=0.3,所以EX=1×P(X=1)+0×P(X=0)=0.7.(2)Y的取值為0,1,2,則P(Y=0)=0.32=0.09,P(Y=1)=C12×0.7×0.3=0.42,P(Y=2)=0.72=0.49Y的概率分布列為Y012P0.090.420.49所以EY=0×0.09+1×0.42+2×0.49=1.4.(3)η的取值為0,1,2,3,則P(η=0)=0.33=0.027,P(η=1)=C13×0.7×0.32=0.189,P(η=2)=C23×0.72×0.3=0.441,P(η=3)=0.73=0.343∴η的概率分布為η0123P0.0270.1890.4410.343所以Eη=0×0.027+1×0.189+2×0.441+3×0.343=2.1.46.已知矩陣A=abcd,若矩陣A屬于特征值3的一個特征向量為α1=11,屬于特征值-1的一個特征向量為α2=1-1,則矩陣A=______.答案:由矩陣A屬于特征值3的一個特征向量為α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩陣A屬于特征值2的一個特征向量為α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩陣A=1221.(10分)故為:1221.47.橢圓上有一點P,F1,F2是橢圓的左、右焦點,△F1PF2為直角三角形,則這樣的點P有()

A.3個

B.4個

C.6個

D.8個答案:C48.已知D是△ABC所在平面內一點,,則()

A.

B.

C.=

D.答案:A49.設集合A={x|},則A∩B等于(

A.

B.

C.

D.答案:B50.如果拋物線y2=a(x+1)的準線方程是x=-3,那么這條拋物線的焦點坐標是()A.(3,0)B.(2,0)C.(1,0)D.(-1,0)答案:拋物線y2=a(x+1)可由拋物線y2=ax向左平移一個單位長度得到,因為拋物線y2=a(x+1)的準線方程是x=-3,所以拋物線y2=ax的準線方程是x=-2,且焦點坐標為(2,0),那么拋物線y2=a(x+1)的焦點坐標為(1,0).故選C.第3卷一.綜合題(共50題)1.已知實數x、y滿足(x-2)2+y2+(x+2)2+y2=6,則2x+y的最大值等于______.答案:∵實數x、y滿足(x-2)2+y2+(x+2)2+y2=6,∴點(x,y)的軌跡是橢圓,其方程為x29+y25=1,所以可設x=3cosθ,y=5sinθ,則z=6cosθ+5sinθ=41sin(θ+

β)≤41,∴2x+y的最大值等于41.故為:412.為了了解某社區居民是否準備收看奧運會開幕式,某記者分別從社區的60~70歲,40~50歲,20~30歲的三個年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進行調查,若60~70歲這個年齡段中抽查了8人,那么x為()

A.90

B.120

C.180

D.200答案:D3.若則實數λ的值是()

A.

B.

C.

D.答案:D4.已知點(3,1)和(-4,6)在直線3x-2y+a=0的兩側,則實數a的取值范圍是(

A.a<-7或a>24

B.a=7或a=24

C.-7<a<24

D.-24<a<7答案:C5.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)?(2b)=-2,則x=______.答案:c-a=(0,0,1-x),(c-a)?(2b)

=(2,4,2)?(0,0,1-x)=2(1-x)=-2,解得x=2,故為2.6.已知△ABC的三個頂點為A(1,-2,5),B(-1,0,1),C(3,-4,5),則邊BC上的中線長為______.答案:∵A(1,-2,5),B(-1,0,1),C(3,-4,5),∴BC的中點為D(1,-2,3),∴|AD|=(1-1)2+(-2+2)2+(5-3)2=2.故為:2.7.設矩陣M=.32-121232.的逆矩陣是M-1=.abcd.,則a+c的值為______.答案:由題意,矩陣M的行列式為.32-121232.=32×32+12×12=1∴矩陣M=.32-121232.的逆矩陣是M-1=.3212-1232.∴a+c=3-12故為3-128.在極坐標系中,點A(2,π2)關于直線l:ρcosθ=1的對稱點的一個極坐標為______.答案:在直角坐標系中,A(0,2),直線l:x=1,A關于直線l的對稱點B(2,2).由于|OB|=22,OB直線的傾斜角等于π4,且點B在第一象限,故B的極坐標為(22,π4),故為

(22,π4).9.設集合A={x|x<1,x∈R},B={x|1x>1,x∈R},則下列圖形能表示A與B關系的是()A.

B.

C.

D.

答案:B={x|1x>1}={x|0<x<1},所以B?A.所以對應的關系選A.故選A.10.若{、、}為空間的一組基底,則下列各項中,能構成基底的一組向量是[

]A.,+,﹣

B.,+,﹣

C.,+,﹣

D.+,﹣,+2答案:C11.設O為坐標原點,F為拋物線的焦點,A是拋物線上一點,若·=,則點A的坐標是

)A.B.C.D.答案:B解析:略12.已知點P的坐標為(3,4,5),試在空間直角坐標系中作出點P.答案:由P(3,4,5)可知點P在Ox軸上的射影為A(3,0,0),在Oy軸上射影為B(0,4,0),以OA,OB為鄰邊的矩形OACB的頂點C是點P在xOy坐標平面上的射影C(3,4,0).過C作直線垂直于xOy坐標平面,并在此直線的xOy平面上方截取5個單位,得到的就是點P.13.設P、Q為兩個非空實數集合,定義集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},則P+Q中元素的個數是______.答案:∵a∈P,b∈Q,∴a可以為0,2,5三個數,b可以為1,2,6三個數,∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8個元素.故為8.14.在空間直角坐標系中,點P(2,-4,6)關于y軸對稱點P′的坐標為P′(-2,-4,-6)P′(-2,-4,-6).答案:∵在空間直角坐標系中,點(2,-4,6)關于y軸對稱,∴其對稱點為:(-2,-4,-6),故為:(-2,-4,-6).15.設集合A={1,2,4},B={2,6},則A∪B等于()A.{2}B.{1,2,4,6}C.{1,2,4}D.{2,6}答案:∵集合A={1,2,4},B={2,6},∴A∪B={1,2,4}∪{2,6}={1,2,4,6},故選B.16.已知三角形ABC的一個頂點A(2,3),AB邊上的高所在的直線方程為x-2y+3=0,角B的平分線所在的直線方程為x+y-4=0,求此三角形三邊所在的直線方程.答案:由題意可得AB邊的斜率為-2,由點斜式求得AB邊所在的直線方程為y-3=-2(x-2),即2x+y-7=0.由2x+y-7=0x+y-4=0

求得x=3y=1,故點B的坐標為(3,1).設點A關于角B的平分線所在的直線方程為x+y-4=0的對稱點為M(a,b),則M在BC邊所在的直線上.則由b-3a-2=-1a+22+b+32-4=0

求得a=1b=2,故點M(1,2),由兩點式求得BC的方程為y-12-1=x-31-3,即x+2y-5=0.再由x-2y+3=0x+2y-5=0求得點C的坐標為(2,52),由此可得得AC的方程為x=2.17.已知矩陣A將點(1,0)變換為(2,3),且屬于特征值3的一個特征向量是11,(1)求矩陣A.(2)β=40,求A5β.答案:(1)設A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.

7分(2)A=2130的特征多項式為f(λ)=.λ-2-1-3λ.=

-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3時,α1=11,λ2=-1時,α2=1-3令β=mα1+α2,則β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.18.化簡下列各式:

(1)AB+DF+CD+BC+FA=______;

(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故為:(1)0;(2)AC19.把一枚硬幣連續拋擲兩次,事件A=“第一次出現正面”,事件B=“第二次出現正面”,則P(B|A)等于(

A.

B.

C.

D.答案:A20.已知過點A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為()

A.0

B.-8

C.2

D.10答案:B21.在直角坐標系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲線的解析式是:______.答案:由題意并根據cos2θ+sin2θ=1

可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故為(x+1)2+(y-2)2=9.解析:在直角坐標系中,22.在程序語言中,下列符號分別表示什么運算*;\;∧;SQR;ABS?答案:“*”表示乘法運算;“\”表示除法運算;“∧”表示乘方運算;“SQR()”表示求算術平方根運算;“ABS()”表示求絕對值運算.23.若事件與相互獨立,且,則的值等于A.B.C.D.答案:B解析:事件“”表示的意義是事件與同時發生,因為二者相互獨立,根據相互獨立事件同時發生的概率公式得:.24.如圖所示,PD⊥平面ABCD,且四邊形ABCD為正方形,AB=2,E是PB的中點,

cos〈,〉=.

(1)建立適當的空間坐標系,寫出點E的坐標;

(2)在平面PAD內求一點F,使EF⊥平面PCB.答案:(1)點E的坐標是(1,1,1)(2)F是AD的中點時滿足EF⊥平面PCB解析:(1)如圖所示,以DA、DC、DP所在直線分別為x軸、y軸、z軸建立空間直角坐標系,則A(2,0,0)、B(2,2,0)、C(0,2,0),設P(0,0,2m),則E(1,1,m),∴=(-1,1,m),=(0,0,2m).∴cos〈,〉==.解得m=1,∴點E的坐標是(1,1,1).(2)∵F∈平面PAD,∴可設F(x,0,z).則=(x-1,-1,z-1),又=(2,0,0),=(0,2,-2)∵EF⊥平面PCB∴⊥,且⊥即∴∴,∴F點的坐標為(1,0,0)即點F是AD的中點時滿足EF⊥平面PCB.25.不等式的解集是

)A.B.C.D.答案:B解析:當時,不等式成立;當時,不等式可化為,解得綜上,原不等式解集為故選B26.從裝有5只紅球和5只白球的袋中任意取出3只球,有如下幾對事件:

①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”;

②“取出兩只紅球和一只白球”與“取出3只紅球”;

③“取出3只紅球”與“取出的3只球中至少有一只白球”;

④“取出3只紅球”與“取出3只白球”.

其中是對立事件的有______(只填序號).答案:對于①“取出兩只紅球和一只白球”與“取出一只紅球和兩只白球”,由于它們不能同時發生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于②“取出兩只紅球和一只白球”與“取出3只紅球”,由于它們不能同時發生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.對于③“取出3只紅球”與“取出的3只球中至少有一只白球”,它們不可能同時發生,而且它們的并事件是必然事件,故它們是對立事件.④“取出3只紅球”與“取出3只白球”.由于它們不能同時發生,故是互斥事件.但由于它們的并事件不是必然事件,故它們不是對立事件.故為③.27.設、、為實數,,則下列四個結論中正確的是(

)A.B.C.且D.且答案:D解析:若,則,則.若,則對于二次函數,由可得結論.28.已知原命題“兩個無理數的積仍是無理數”,則:

(1)逆命題是“乘積為無理數的兩數都是無理數”;

(2)否命題是“兩個不都是無理數的積也不是無理數”;

(3)逆否命題是“乘積不是無理數的兩個數都不是無理數”;

其中所有正確敘述的序號是______.答案:(1)交換原命題的條件和結論得到逆命題:“乘積為無理數的兩數都是無理數”,正確.(2)同時否定原命題的條件和結論得到否命題:“兩個不都是無理數的積也不是無理數”,正確.(3)同時否定原命題的條件和結論,然后在交換條件和結論得到逆否命題:“乘積不是無理數的兩個數不都是無理數”.所以逆否命題錯誤.故為:(1)(2).29.已知M為橢圓x2a2+y2b2=1(a>b>0)上的動點,F1、F2為橢圓焦點,延長F2M至點B,則ρF1MB的外角的平分線為MN,過點F1作

F1Q⊥MN,垂足為Q,當點M在橢圓上運動時,則點Q的軌跡方程是______.答案:點F1關于∠F1MF2的外角平分線MQ的對稱點N在直線F1M的延長線上,故|F1N|=|PF1|+|PF2|=2a(橢圓長軸長),又OQ是△F2F1N的中位線,故|OQ|=a,點Q的軌跡是以原點為圓心,a為半徑的圓,點Q的軌跡方程是x2+y2=a2故為:x2+y2=a230.(理)下列以t為參數的參數方程中表示焦點在y軸上的橢圓的是()

A.

B.(a>b>0)

C.

D.

答案:C31.已知圓x2+y2=r2在曲線|x|+|y|=4的內部,則半徑r的范圍是()A.0<r<22B.0<r<2C.0<r<2D.0<r<4答案:根據題意畫出圖形,如圖所示:可得曲線|x|+|y|=4表示邊長為42的正方形,如圖ABCD為正方形,x2+y2=r2表示以原點為圓心的圓,過O作OE⊥AB,∵邊AB所在直線的方程為x+y=4,∴|OE|=42=22,則滿足題意的r的范圍是0<r<22.故選A32.從某校隨機抽取了100名學生,將他們的體重(單位:kg)數據繪制成頻率分布直方圖(如圖),由圖中數據可知m=______,所抽取的學生中體重在45~50kg的人數是______.答案:由頻率分步直方圖知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的體重在45~50kg的人數是0.1×5×100=50人,故為:0.1;5033.設a1,a2,…,an為實數,證明:a1+a2+…+ann≤a21+a22+…+a2nn.答案:證明:不妨設a1≤a2≤…≤an,則由排序原理得:a12+a22+…+an2=a1a1+a2a2+…+anana12+a22+…+an2≤a1a2+a2a3+…+ana1a12+a22+…+an2≤a1a3+a2a4+…+an-1a1+ana2…a12+a22+…+an2≤a1an+a2a1+…+anan-1.將上述n個式子相加,得:n(a12+a22+…+an2)≤(a1+a2+…+an)2,上式兩邊除以n2,并開方可得:a1+a2+…+ann≤a21+a22+…+a2nn.34.已知△ABC,A(-1,0),B(3,0),C(2,1),對它先作關于x軸的反射變換,再將所得圖形繞原點逆時針旋轉90°.

(1)分別求兩次變換所對應的矩陣M1,M2;

(2)求△ABC在兩次連續的變換作用下所得到△A′B′C′的面積.答案:(1)關于x軸的反射變換M1=100-1,繞原點逆時針旋轉90°的變換M2=0-110.(4分)(2)∵M2?M1=0-110100-1=0110,(6分)△ABC在兩次連續的變換作用下所得到△A′B′C′,∴A(-1,0),B(3,0),C(2,1)變換成:A′(0,-1),B′(0,3),C′(1,2),(9分)∴△A'B'C'的面積=12×4×1=2.(10分)35.設集合A={1,2,3,4},集合B={1,3,5,7},則集合A∪B=()A.{1,3}B.{1,2,3,4,5,7}C.{5,7}D.{2,4,5,7}答案:∵A={1,2,3,4},B={1,3,5,7},∴A∪B={1,2,3,4,5,7},故選B.36.如圖,△ABC內接于圓⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,則∠AOB=()

A.30°

B.40°

C.80°

D.70°

答案:C37.直線y=kx+1與橢圓x29+y24=1的位置關系是()A.相交B.相切C.相離D.不確定答案:∵直線y=kx+1過定點(0,1),把(0,1)代入橢圓方程的左端有0+14<1,即(0,1)在橢圓內部,∴直線y=kx+1與橢圓x29+y24=1必相交,

因此可排除B、C、D;

故選A.38.已知向量表示“向東航行1km”,向量表示“向南航行1km”,則向量表示()

A向東南航行km

B.向東南航行2km

C.向東北航行km

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論