高中數學北師大版第二章函數生活中的變量關系 第2章_第1頁
高中數學北師大版第二章函數生活中的變量關系 第2章_第2頁
高中數學北師大版第二章函數生活中的變量關系 第2章_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第二章§1A級基礎鞏固1.諺語“瑞雪兆豐年”說明eq\x(導學號00814193)(A)A.下雪與來年的豐收具有依賴關系B.下雪與來年的豐收具有函數關系C.下雪是豐收的函數D.豐收是下雪的函數[解析]積雪層對越冬作物具有防凍保暖的作用,大雪可以防止土壤中的熱量向外散發,又可阻止外界冷空氣的侵入,具有增墑肥田的作用.所以下雪與來年的豐收具有依賴關系,但不是函數關系.2.已知變量x,y滿足y=|x|,則下列說法錯誤的是eq\x(導學號00814194)(D)A.x,y之間有依賴關系 B.x,y之間有函數關系C.y是x的函數 D.x是y的函數[解析]當y取一個正值時,有兩個x與它對應,故D錯.3.下列兩個變量之間的關系,不是函數關系的是eq\x(導學號00814195)(D)A.多邊形的邊數和它的內角和B.正方形的邊長和面積C.球的體積和半徑D.人的體重和身高4.張大明種植了10畝小麥,每畝施肥x千克,小麥總產量y千克,則eq\x(導學號00814196)(A)A.x,y之間有依賴關系 B.x,y之間有函數關系C.y是x的函數 D.x是y的函數[解析]雖然小麥總產量y與每畝施肥量x之間存在依賴關系,但小麥總產量y還受氣候、管理等其他因素的影響,所以x,y之間無函數關系.5.星期天,小明從家出發,出去散步,圖中描述了他散步過程中離家的距離s(m)與散步所用的時間t(min)之間的函數關系,根據圖像,下面的描述符合小明散步情況的是eq\x(導學號00814197)(B)A.從家出發,到一個公共閱報欄,看了一會兒報,就回家了B.從家出發,到一個公共閱報欄,看了一會兒報后,繼續向前走了一段,然后回家了C.從家出發,散了一會兒步(沒有停留),然后回家了D.從家出發,散了一會兒步,就找同學去了,18min后才回家[解析]水平線段表明小明離家的距離始終是300米,然后離家距離達到500米,說明小明從家出發后,到一個公共閱報欄,看了一會兒報后,繼續向前走了一段,然后回家了.故答案為B.6.從市場中了解到,飾用K金的含金量如下表:K數24K22K21K18K14K含金量%99以上75K數12K10K9K8K6K含金量%5025飾用K金的K數與含金量之間是_函數__關系,K數越大,含金量_越高\x(導學號00814198)7.如圖的曲線表示一人騎自行車離家的距離s(千米)與時間t(時)的關系.騎車者9時離開家,15時回家.根據這個曲線圖,請你回答下列問題:eq\x(導學號00814199)(1)最初到達離家最遠的地方是什么時間?離家多遠?(2)何時開始第一次休息?休息多長時間?(3)第一次休息時,離家多遠?(4)1100到1200他騎了多少千米?(5)他在900~1000和1000~1030的平均速度分別是多少?(6)他在哪段時間里停止前進并休息用午餐?[解析](1)最初到達離家最遠的地方的時間是12時,離家30千米.(2)1030開始第一次休息,休息了半小時.(3)第一次休息時,離家17千米.(4)1100至1200,他騎了13千米.(5)900~1000的平均速度是10千米/時;1000~1030的平均速度是14千米/時.(6)從12時到13時停止前進,并休息用午餐.B級素養提升1.如圖,將一個“瘦長”的圓柱鋼錠經過多次鍛壓成一個“矮胖”的圓柱鋼錠(不計損耗),則在鍛壓過程中,圓柱體積與高的關系可用圖像表示為eq\x(導學號00814200)(B)[解析]圓柱鋼錠的體積不隨高的變化而變化.2.圓柱的高為10cm,當圓柱底面半徑變化時,圓柱的體積也隨之發生變化,在這個變化過程中,_圓柱底面半徑__是自變量,_圓柱體積__是因變量.設圓柱底面半徑為r(cm),圓柱的體積V(cm3)與r(cm)的關系式為_V=10πr2__,當底面半徑從2cm變化到5cm時,圓柱的體積由_40π__(cm3)變化到_250π__(cm3).eq\x(導學號00814201)[解析]圓柱的體積為V=πr2h(其中r表示圓柱的底面半徑,h表示圓柱的高).3.向平靜的湖面投一塊石子,便會形成以落水點為圓心的一系列同心圓.eq\x(導學號00814202)(1)在這個變化過程中,有哪些變量?(2)若圓的面積用S表示,半徑用R表示,則S和R的關系是什么?它們是常量還是變量?(3)若圓的周長用C表示,半徑用R表示,則C與R的關系式是什么?[解析](1)形成的一系列同心圓的半徑、周長、面積都是變量.(2)圓的面積S與半徑R存在著依賴關系,對于半徑R的每一個取值,都有唯一的面積S與之對應,所以圓的面積S是半徑R的函數,其函數關系式是S=πR2.圓的面積S、半徑R都是變量.(3)C=2πR.4.在工作的狀態下,飲水機會通過自動對水加熱使機中水的溫度保持在一定范圍內.如圖表示在飲水機的水溫達到最高后,飲水機處于工作狀態中的水的溫度的變化情況:eq\x(導學號00814203)根據圖,設計一個問題,并解答所設計的問題.[解析]設計問題就是從圖像中獲取有關信息.例如,提出下列問題:問題1:飲水機中水的最高溫度是多少?最低溫度是多少?解:水的最高溫度為96℃,最低溫度為91問題2:水溫上升到最高溫度后,再經過10分鐘飲水機中水的溫度多高?35分鐘時水的溫度多高?解:10

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論