



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省呂梁市肖家洼村中學2021年高一數學文模擬試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.已知集合,,,則?A.[-1,0]
B.[-1,0)
C.(-1,0)
D.[0,1]參考答案:B2.已知函數,()的最小正周期為,則在區間上的值域為(
)A.
B.
C.
D.參考答案:A試題分析:,又最小正周期為,所以,即,由,得,從而,因此的值域為,故選擇A.考點:三角函數的值域.3.要得到的圖象只需將y=3sin2x的圖象
(
)A.向左平移個單位
B.向右平移個單位C.向左平移個單位
D.向右平移個單位參考答案:C4.設函數,則()A. B.3 C. D.參考答案:D
5.如圖,三棱柱中,側棱底面,底面三角形是正三角形,是中點,則下列敘述正確的是A.平面 B.與是異面直線
C.// D.參考答案:D6.函數f(x)=ax2+2(a﹣3)x+18在區間(﹣3,+∞)上遞減,則實數α的取值范圍是(
)A. B. C.(﹣∞,0] D.[0,+∞)參考答案:A【考點】二次函數的性質.【專題】計算題;函數的性質及應用.【分析】當a=0時,確定出f(x)解析式,滿足題意;當a≠0時,利用二次函數性質求出a的范圍,綜上,得到實數a的取值范圍即可.【解答】解:當a=0時,f(x)=﹣6x+18,滿足在區間(﹣3,+∞)上遞減;當a≠0時,函數f(x)=ax2+2(a﹣3)x+18的圖象的對稱軸方程為x=,且函數在區間(﹣3,+∞)上遞減,∴a<0,且≤﹣3,解得:﹣≤a<0.則實數a的取值范圍是[﹣,0],故選:A.【點評】此題考查了二次函數的性質,熟練掌握二次函數性質是解本題的關鍵.7.若,則(
).A.
B.
C.
D.參考答案:B略8.對于函數,若在其定義域內存在兩個實數,使得當時,
的值域是,則稱函數為“函數”。給出下列四個函數①
②③
④其中所有“函數”的序號是(▲)A.①③ B.②③ C.②④ D.②③④參考答案:D略9.已知α∈,sinα+2cosα=,則tan2α=()參考答案:C10.右圖中陰影部分表示的集合是(
)
A.
B.
C.D.參考答案:A略二、填空題:本大題共7小題,每小題4分,共28分11.設集合U={1,2,3,4},M={x|(x﹣1)(x﹣4)=0},則?UM=.參考答案:{2,3}考點:補集及其運算.專題:集合.分析:求出M中方程的解確定出M,根據全集U求出M的補集即可.解答:解:由M中方程變形得:x﹣1=0或x﹣4=0,即x=1或x=4,∴M={1,4},∵U={1,2,3,4},∴?UM={2,3}.故答案為:{2,3}點評:此題考查了補集及其運算,熟練掌握補集的定義是解本題的關鍵.12.已知函數,且此函數圖象過點(1,5),則實數m的值為
.參考答案:4【考點】函數的零點;函數的圖象.【專題】計算題;函數思想;待定系數法;函數的性質及應用.【分析】直接將圖象所過的點(1,5)代入函數式即可求得m=4.【解答】解:因為函數的圖象過點(1,5),所以f(1)=5,即1+m=5,解得m=4,f(x)=x+,故填:4.【點評】本題主要考查了函數的圖象與性質,直接將圖象所過的點代入函數式即可解決問題,屬于基礎題.13.對于項數為m的有窮數列數集,記(k=1,2,…,m),即為中的最大值,并稱數列是的控制數列.如1,3,2,5,5的控制數列是1,3,3,5,5.若各項均為正整數的數列的控制數列為2,3,4,5,5,則所有滿足條件的有______個.參考答案:;;;;14.給出下列四個判斷:①定義在上的奇函數,當時,則函數的值域為;②若不等式對一切恒成立,則實數的取值范圍是;③當時,對于函數f(x)定義域中任意的()都有;④設表示不超過的最大整數,如:,,對于給定的,定義,則當時函數的值域是;上述判斷中正確的結論的序號是___________________.參考答案:②④略15.在中,若則=___________.參考答案:略16.如圖,當點P、Q三等份線段AB時,有;如果點A1,A2,……,An–1是AB的n(n≥3)等份點,則=
()。參考答案:略17.定義在上的函數滿足,則的值為_____.參考答案:略三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.已知,且(1)求關于的函數關系式;(2)若時,的最大值為4,求的值;(3)求的最小正周期及單調減區間。參考答案:解:(1)∵
∴(2)
(3)19.若對定義域內任意x,都有(為正常數),則稱函數為“a距”增函數.(Ⅰ)若,,試判斷是否為“1距”增函數,并說明理由;(Ⅱ)若,,其中,且為“2距”增函數,求k的取值范圍.參考答案:(Ⅰ)是;(Ⅱ).【分析】(Ⅰ)利用“1距”增函數的定義證明即可;(Ⅱ)由題得時,恒成立,再對x分類討論得解.【詳解】(Ⅰ)任意,,故是“1距”增函數;(Ⅱ)因為,,其中,且為“2距”增函數,即時,恒成立,所以,當時,即,當時,,所以.綜上所述,得.【點睛】本題主要考查新定義和函數的單調性,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平和分析推理能力.20.(12分)已知函數(1)設、為的兩根,且,,試求a的取值范圍(2)當時,f(x)的最大值為2,試求a參考答案:(1)由題意可得、為的兩根,且,,解得故(2)當時,的最大值為2,由,可知拋物線開口向上,對稱軸為①若,則當時取得最大值,即,解得②若,則當時取得最大值,即,解得故或
21.(本題滿分14分)已知函數.(1)若的圖像如圖(1)所示,求的值;(2)若的圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣西中醫藥大學《土木工程施工組織設計》2023-2024學年第二學期期末試卷
- 六安職業技術學院《建筑構造及施工圖識讀》2023-2024學年第二學期期末試卷
- 長春大學旅游學院《計算方法及軟件應用》2023-2024學年第二學期期末試卷
- 云南農業職業技術學院《巖漿巖巖石學》2023-2024學年第二學期期末試卷
- 新能源汽車市場突圍策略
- 愛的教育第二卷核心解析
- 學生家長課件制作指南
- 2024年電調收音機項目投資申請報告代可行性研究報告
- (高清版)DG∕TJ 08-2111-2012 灘涂促淤圈圍造地工程設計規范
- 別墅前期裝修設計
- 2025屆陜西省安康市高三下學期適應性模擬考試歷史試題(原卷版+解析版)
- 備戰2025年高考數學(新高考專用)搶分秘籍導數及其應用(九大題型)(學生版+解析)
- 村干部測試試題及答案
- 康復醫學教學課件 - 基礎醫學 - 醫藥衛生 - 專業資料
- 寧波市余姚市交通運輸局招聘工作人員筆試真題2024
- 《現代西方女性主義》課件
- 2025年廣東省廣州市天河區中考一模物理試題(含答案)
- 2025年四川省成都市青羊區中考二診化學試題(原卷版+解析版)
- 急性心肌梗死診斷和治療
- 【MOOC】大學英語聽說譯-河南理工大學 中國大學慕課MOOC答案
- 幼兒園班級幼兒圖書目錄清單(大中小班)
評論
0/150
提交評論