




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的左、右焦點分別為,,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率A. B.C. D.2.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊方法數為().A.432 B.576 C.696 D.9603.在中,內角所對的邊分別為,若依次成等差數列,則()A.依次成等差數列 B.依次成等差數列C.依次成等差數列 D.依次成等差數列4.已知等差數列的前項和為,若,,則數列的公差為()A. B. C. D.5.劉徽是我國魏晉時期偉大的數學家,他在《九章算術》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內隨機取一個點,此點取自朱方的概率為()A. B. C. D.6.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.7.偶函數關于點對稱,當時,,求()A. B. C. D.8.已知當,,時,,則以下判斷正確的是A. B.C. D.與的大小關系不確定9.關于的不等式的解集是,則關于的不等式的解集是()A. B.C. D.10.已知函數的定義域為,且,當時,.若,則函數在上的最大值為()A.4 B.6 C.3 D.811.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點,點P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或512.執行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,四面體的一條棱長為,其余棱長均為1,記四面體的體積為,則函數的單調增區間是____;最大值為____.14.如圖,在△ABC中,AB=4,D是AB的中點,E在邊AC上,AE=2EC,CD與BE交于點O,若OB=OC,則△ABC面積的最大值為_______.15.如圖,為測量出高,選擇和另一座山的山頂為測量觀測點,從點測得點的仰角,點的仰角以及;從點測得.已知山高,則山高__________.16.已知等邊三角形的邊長為1.,點、分別為線段、上的動點,則取值的集合為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,內角所對的邊分別為,已知,且.(I)求角的大??;(Ⅱ)若,求面積的取值范圍.18.(12分)已知橢圓的離心率為,且以原點O為圓心,橢圓C的長半軸長為半徑的圓與直線相切.(1)求橢圓的標準方程;(2)已知動直線l過右焦點F,且與橢圓C交于A、B兩點,已知Q點坐標為,求的值.19.(12分)已知數列是等差數列,前項和為,且,.(1)求.(2)設,求數列的前項和.20.(12分)已知在中,角,,的對邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.21.(12分)已知不等式對于任意的恒成立.(1)求實數m的取值范圍;(2)若m的最大值為M,且正實數a,b,c滿足.求證.22.(10分)如圖,空間幾何體中,是邊長為2的等邊三角形,,,,平面平面,且平面平面,為中點.(1)證明:平面;(2)求二面角平面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
設,則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設,則,在中,易得,所以,解得(負值舍去),所以橢圓的離心率.故選B.2、B【解析】
先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產生的空檔中,共有種不同方式;根據分類加法、分步乘法原理,得滿足要求的排隊方法數為種.故選:B.【點睛】本題考查排列組合的綜合應用,在分類時,要注意不重不漏的原則,本題是一道中檔題.3、C【解析】
由等差數列的性質、同角三角函數的關系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結果.【詳解】依次成等差數列,,正弦定理得,由余弦定理得,,即依次成等差數列,故選C.【點睛】本題主要考查等差數列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.4、D【解析】
根據等差數列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點睛】本題考查了等差數列的計算,意在考查學生的計算能力.5、C【解析】
首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【點睛】本題主要考查了幾何概型的概率求法,還考查了數形結合的思想和運算求解的能力,屬于基礎題.6、C【解析】
先解不等式,可得出,求出函數的值域,由題意可知,不等式在定義域上恒成立,可得出關于的不等式,即可解得實數的取值范圍.【詳解】,先解不等式.①當時,由,得,解得,此時;②當時,由,得.所以,不等式的解集為.下面來求函數的值域.當時,,則,此時;當時,,此時.綜上所述,函數的值域為,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用函數不等式恒成立求參數,同時也考查了分段函數基本性質的應用,考查分類討論思想的應用,屬于中等題.7、D【解析】
推導出函數是以為周期的周期函數,由此可得出,代值計算即可.【詳解】由于偶函數的圖象關于點對稱,則,,,則,所以,函數是以為周期的周期函數,由于當時,,則.故選:D.【點睛】本題考查利用函數的對稱性和奇偶性求函數值,推導出函數的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.8、C【解析】
由函數的增減性及導數的應用得:設,求得可得為增函數,又,,時,根據條件得,即可得結果.【詳解】解:設,則,即為增函數,又,,,,即,所以,所以.故選:C.【點睛】本題考查了函數的增減性及導數的應用,屬中檔題.9、A【解析】
由的解集,可知及,進而可求出方程的解,從而可求出的解集.【詳解】由的解集為,可知且,令,解得,,因為,所以的解集為,故選:A.【點睛】本題考查一元一次不等式、一元二次不等式的解集,考查學生的計算求解能力與推理能力,屬于基礎題.10、A【解析】
根據所給函數解析式滿足的等量關系及指數冪運算,可得;利用定義可證明函數的單調性,由賦值法即可求得函數在上的最大值.【詳解】函數的定義域為,且,則;任取,且,則,故,令,,則,即,故函數在上單調遞增,故,令,,故,故函數在上的最大值為4.故選:A.【點睛】本題考查了指數冪的運算及化簡,利用定義證明抽象函數的單調性,賦值法在抽象函數求值中的應用,屬于中檔題.11、B【解析】
根據漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎題.12、C【解析】
由程序語言依次計算,直到時輸出即可【詳解】程序的運行過程為當n=2時,時,,此時輸出.故選:C【點睛】本題考查由程序框圖計算輸出結果,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13、(或寫成)【解析】試題分析:設,取中點則,因此,所以,因為在單調遞增,最大值為所以單調增區間是,最大值為考點:函數最值,函數單調區間14、【解析】
先根據點共線得到,從而得到O的軌跡為阿氏圓,結合三角形和三角形的面積關系可求.【詳解】設B,O,E共線,則,解得,從而O為CD中點,故.在△BOD中,BD=2,,易知O的軌跡為阿氏圓,其半徑,故.故答案為:.【點睛】本題主要考查三角形的面積問題,把所求面積進行轉化是求解的關鍵,側重考查數學運算的核心素養.15、1【解析】試題分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案為1.考點:正弦定理的應用.16、【解析】
根據題意建立平面直角坐標系,設三角形各點的坐標,依題意求出,,,的表達式,再進行數量積的運算,最后求和即可得出結果.【詳解】解:以的中點為坐標原點,所在直線為軸,線段的垂直平分線為軸建立平面直角坐標系,如圖所示,則,,,,則,,,設,,,即點的坐標為,則,,,所以故答案為:【點睛】本題考查平面向量的坐標表示和線性運算,以及平面向量基本定理和數量積的運算,是中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】
(I)根據,利用二倍角公式得到,再由輔助角公式得到,然后根據正弦函數的性質求解.(Ⅱ)根據(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】(I)因為,所以,,,或,或,因為,所以所以;(Ⅱ)由余弦定理得:,所以,所以,當且僅當取等號,又因為,所以,所以【點睛】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運算求解的能力,屬于中檔題.18、(1);(2).【解析】
(1)根據橢圓的離心率為,得到,根據直線與圓的位置關系,得到原心到直線的距離等于半徑,得到,從而求得,進而求得橢圓的方程;(2)分直線的斜率存在是否為0與不存在三種情況討論,寫出直線的方程,與橢圓方程聯立,利用韋達定理,向量的數量積,結合已知條件求得結果.【詳解】(1)由離心率為,可得,,且以原點O為圓心,橢圓C的長半軸長為半徑的圓的方程為,因與直線相切,則有,即,,,故而橢圓方程為.(2)①當直線l的斜率不存在時,,,由于;②當直線l的斜率為0時,,,則;③當直線l的斜率不為0時,設直線l的方程為,,,由及,得,有,∴,,,,∴,綜上所述:.【點睛】該題考查直線與圓錐曲線的綜合問題,橢圓的標準方程,考查直線與橢圓的位置關系,求向量數量積,在解題的過程中,注意對直線方程的分類討論,屬于中檔題目.19、(1)(2)【解析】
(1)由數列是等差數列,所以,解得,又由,解得,即可求得數列的通項公式;(2)由(1)得,利用乘公比錯位相減,即可求解數列的前n項和.【詳解】(1)由題意,數列是等差數列,所以,又,,由,得,所以,解得,所以數列的通項公式為.(2)由(1)得,,,兩式相減得,,即.【點睛】本題主要考查等差的通項公式、以及“錯位相減法”求和的應用,此類題目是數列問題中的常見題型,解答中確定通項公式是基礎,準確計算求和是關鍵,易錯點是在“錯位”之后求和時,弄錯等比數列的項數,能較好的考查考生的數形結合思想、邏輯思維能力及基本計算能力等.20、(1);(2).【解析】分析:(1)在式子中運用正弦、余弦定理后可得.(2)由經三角變換可得,然后運用余弦定理可得,從而得到,故得.詳解:(1)由題意及正、余弦定理得,整理得,∴(2)由題意得,∴,∵,∴,∴.由余弦定理得,∴,,當且僅當時等號成立.∴.∴面積的最大值為.點睛:(1)正、余弦定理經常與三角形的面積綜合在一起考查,解題時要注意整體代換的應用,如余弦定理中常用的變形,這樣自然地與三角形的面積公式結合在一起.(2)運用基本不等式求最值時,要注意等號成立的條件,在解題中必須要注明.21、(1)(2)證明見解析【解析】
(1)法一:,,得,則,由此可得答案;法二:由題意,令,易知是偶函數,且時為增函數,由此可得出答案;(2)由(1)知,,即,結合“1”的代換,利用基本不等式即可證明結論.【詳解】解:(1)法一:(當且僅當時取等號),又(當且僅當時取等號),所以(當且僅當時取等號),由題意得,則,解得,故的取值范圍是;法二:因為對于任意恒有成立,即,令,易知是偶函數,且時為增函數,所以,即,則,解得,故的取值范圍是;(2)由(1)知,,即,∴,故不等式成立.【點睛】本題主要考查絕對值不等式的恒成立問題,考查基本不等式的應用,屬于中檔題.22、(1)證明見解析(2)【解析】
(1)分別取,的中點,,連接,,,,,要證明平面,只需證明面∥面即可.(2)以點為原點,以為軸,以為軸,以為軸,建立空間直角坐標系,分別計算面的法向量,面的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 怎么簽署轉讓合同協議書
- 康復醫學科設備分類體系
- 網紅飲品品牌授權與知識產權保護合同
- 高管股權激勵計劃績效評估及合作協議
- 生態草原牧場養殖與資源保護合作協議
- 公共設施建筑給排水系統安裝與水質壓力檢測合同
- 動畫電影制作與全球發行外包服務合同
- 海外集裝箱實時追蹤租賃服務合同
- 國際訴訟文件安全快遞及全額賠償附加協議
- 澳新市場股權合作開發與文化產業投資協議
- 自動噴水滅火系統質量驗收項目缺陷判定記錄
- 人教版一年級起點小學二年級英語下冊全套教案
- T-CCIAT 0043-2022 建筑工程滲漏治理技術規程
- 供貨、安裝、調試、驗收方案
- 電氣設備-開篇緒論匯編
- 婚無遠慮必有財憂法商思維營銷之婚姻篇74張幻燈片
- 紅外圖像處理技術課件
- 小學一年級人民幣學具圖片最新整理直接打印
- 運動負荷參考曲線
- 電梯快車調試方法
- 醫院病種分析系統操作手冊
評論
0/150
提交評論