




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在正方體中,E是棱的中點,F是側面內的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值2.已知等差數列中,則()A.10 B.16 C.20 D.243.若(),,則()A.0或2 B.0 C.1或2 D.14.在正方體中,點,,分別為棱,,的中點,給出下列命題:①;②;③平面;④和成角為.正確命題的個數是()A.0 B.1 C.2 D.35.若集合,,則下列結論正確的是()A. B. C. D.6.已知集合,則()A. B. C. D.7.以下關于的命題,正確的是A.函數在區間上單調遞增B.直線需是函數圖象的一條對稱軸C.點是函數圖象的一個對稱中心D.將函數圖象向左平移需個單位,可得到的圖象8.在直角坐標系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數m的最小值是()A. B.3 C. D.9.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進行預測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙10.已知點P在橢圓τ:=1(a>b>0)上,點P在第一象限,點P關于原點O的對稱點為A,點P關于x軸的對稱點為Q,設,直線AD與橢圓τ的另一個交點為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.11.若集合,,則()A. B. C. D.12.已知,則下列關系正確的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設,滿足條件,則的最大值為__________.14.已知數列滿足,則________.15.能說明“在數列中,若對于任意的,,則為遞增數列”為假命題的一個等差數列是______.(寫出數列的通項公式)16.已知實數滿足,則的最小值是______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,點為半圓上一動點,若過作橢圓的兩切線分別交軸于、兩點.(1)求證:;(2)當時,求的取值范圍.18.(12分)某市計劃在一片空地上建一個集購物、餐飲、娛樂為一體的大型綜合園區,如圖,已知兩個購物廣場的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.(1)設,用關于的函數表示,并求在區間上的最大值的近似值(精確到0.001公頃);(2)如果,并且,試分別求出、、、的值.19.(12分)已知函數,曲線在點處的切線方程為.(Ⅰ)求,的值;(Ⅱ)若,求證:對于任意,.20.(12分)為響應“堅定文化自信,建設文化強國”,提升全民文化修養,引領學生“讀經典用經典”,某廣播電視臺計劃推出一檔“閱讀經典”節目.工作人員在前期的數據采集中,在某高中學校隨機抽取了120名學生做調查,統計結果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學和不喜歡的比例是5:3.(1)填寫下面列聯表,并根據聯表判斷是否有的把握認為喜歡閱讀中國古典文學與性別有關系?男生女生總計喜歡閱讀中國古典文學不喜歡閱讀中國古典文學總計(2)為做好文化建設引領,實驗組把該校作為試點,和該校的學生進行中國古典文學閱讀交流.實驗人員已經從所調查的120人中篩選出4名男生和3名女生共7人作為代表,這7個代表中有2名男生代表和2名女生代表喜歡中國古典文學.現從這7名代表中任選3名男生代表和2名女生代表參加座談會,記為參加會議的人中喜歡古典文學的人數,求5的分布列及數學期望附表及公式:.21.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.22.(10分)在平面直角坐標系中,,,且滿足(1)求點的軌跡的方程;(2)過,作直線交軌跡于,兩點,若的面積是面積的2倍,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
分別根據線面平行的性質定理以及異面直線的定義,體積公式分別進行判斷.【詳解】對于,設平面與直線交于點,連接、,則為的中點分別取、的中點、,連接、、,,平面,平面,平面.同理可得平面,、是平面內的相交直線平面平面,由此結合平面,可得直線平面,即點是線段上上的動點.正確.對于,平面平面,和平面相交,與是異面直線,正確.對于,由知,平面平面,與不可能平行,錯誤.對于,因為,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點睛】本題考查了正方形的性質、空間位置關系、空間角、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.2、C【解析】
根據等差數列性質得到,再計算得到答案.【詳解】已知等差數列中,故答案選C【點睛】本題考查了等差數列的性質,是數列的常考題型.3、A【解析】
利用復數的模的運算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點睛】本小題主要考查復數模的運算,屬于基礎題.4、C【解析】
建立空間直角坐標系,利用向量的方法對四個命題逐一分析,由此得出正確命題的個數.【詳解】設正方體邊長為,建立空間直角坐標系如下圖所示,,.①,,所以,故①正確.②,,不存在實數使,故不成立,故②錯誤.③,,,故平面不成立,故③錯誤.④,,設和成角為,則,由于,所以,故④正確.綜上所述,正確的命題有個.故選:C【點睛】本小題主要考查空間線線、線面位置關系的向量判斷方法,考查運算求解能力,屬于中檔題.5、D【解析】
由題意,分析即得解【詳解】由題意,故,故選:D【點睛】本題考查了元素和集合,集合和集合之間的關系,考查了學生概念理解,數學運算能力,屬于基礎題.6、A【解析】
考慮既屬于又屬于的集合,即得.【詳解】.故選:【點睛】本題考查集合的交運算,屬于基礎題.7、D【解析】
利用輔助角公式化簡函數得到,再逐項判斷正誤得到答案.【詳解】A選項,函數先增后減,錯誤B選項,不是函數對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D【點睛】本題考查了三角函數的單調性,對稱軸,對稱中心,平移,意在考查學生對于三角函數性質的綜合應用,其中化簡三角函數是解題的關鍵.8、D【解析】
設點,由,得關于的方程.由題意,該方程有解,則,求出正實數m的取值范圍,即求正實數m的最小值.【詳解】由題意,設點.,即,整理得,則,解得或..故選:.【點睛】本題考查直線與方程,考查平面內兩點間距離公式,屬于中檔題.9、A【解析】
利用逐一驗證的方法進行求解.【詳解】若甲預測正確,則乙、丙預測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預測正確,則丙預測也正確,不符合題意;若丙預測正確,則甲必預測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預測正確,不符合題意,故選A.【點睛】本題將數學知識與時政結合,主要考查推理判斷能力.題目有一定難度,注重了基礎知識、邏輯推理能力的考查.10、C【解析】
設,則,,,設,根據化簡得到,得到答案.【詳解】設,則,,,則,設,則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點睛】本題考查了橢圓的離心率,意在考查學生的計算能力和轉化能力.11、A【解析】
用轉化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點睛】本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關鍵.屬于基礎題.12、A【解析】
首先判斷和1的大小關系,再由換底公式和對數函數的單調性判斷的大小即可.【詳解】因為,,,所以,綜上可得.故選:A【點睛】本題考查了換底公式和對數函數的單調性,考查了推理能力與計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
作出可行域,由得,平移直線,數形結合可求的最大值.【詳解】作出可行域如圖所示由得,則是直線在軸上的截距.平移直線,當直線經過可行域內的點時,最小,此時最大.解方程組,得,..故答案為:.【點睛】本題考查簡單的線性規劃,屬于基礎題.14、【解析】
項和轉化可得,討論是否滿足,分段表示即得解【詳解】當時,由已知,可得,∵,①故,②由①-②得,∴.顯然當時不滿足上式,∴故答案為:【點睛】本題考查了利用求,考查了學生綜合分析,轉化劃歸,數學運算,分類討論的能力,屬于中檔題.15、答案不唯一,如【解析】
根據等差數列的性質可得到滿足條件的數列.【詳解】由題意知,不妨設,則,很明顯為遞減數列,說明原命題是假命題.所以,答案不唯一,符合條件即可.【點睛】本題考查對等差數列的概念和性質的理解,關鍵是假設出一個遞減的數列,還需檢驗是否滿足命題中的條件,屬基礎題.16、【解析】
先畫出不等式組對應的可行域,再利用數形結合分析解答得解.【詳解】畫出不等式組表示的可行域如圖陰影區域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線系,平移直線,易知當直線經過點時,直線的縱截距最小,目標函數取得最小值,且.故答案為:-8【點睛】本題主要考查線性規劃問題,意在考查學生對這些知識的理解掌握水平和數形結合分析能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)分兩種情況討論:①兩切線、中有一條切線斜率不存在時,求出兩切線的方程,驗證結論成立;②兩切線、的斜率都存在,可設切線的方程為,將該直線的方程與橢圓的方程聯立,由可得出關于的二次方程,利用韋達定理得出兩切線的斜率之積為,進而可得出結論;(2)求出點、的坐標,利用兩點間的距離公式結合韋達定理得出,換元,可得出,利用二次函數的基本性質可求得的取值范圍.【詳解】(1)由于點在半圓上,則.①當兩切線、中有一條切線斜率不存在時,可求得兩切線方程為,或,,此時;②當兩切線、的斜率都存在時,設切線的方程為(、的斜率分別為、),,,,.綜上所述,;(2)根據題意得、,,令,則,所以,當時,,當時,.因此,的取值范圍是.【點睛】本題考查橢圓兩切線垂直的證明,同時也考查了弦長的取值范圍的計算,考查計算能力,屬于中等題.18、(1),最大值公頃;(2)17、25、5、5.【解析】
(1)由余弦定理求出三角形ABC的邊長BC,進而可以求出,,由面積公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表達式求出,。【詳解】(1)由余弦定理得,,所以,,同理可得又,所以,故在區間上的最大值為,近似值為。(2)由(1)知,,,所以,進而,由知,,,故、、、的值分別是17、25、5、5。【點睛】本題主要考查利用余弦定理解三角形以及同角三角函數平方關系的應用,意在考查學生的數學建模以及數學運算能力。19、(Ⅰ),(Ⅱ)見解析【解析】
(1)根據導數的運算法則,求出函數的導數,利用切線方程求出切線的斜率及切點,利用函數在切點處的導數值為曲線切線的斜率及切點也在曲線上,列出方程組,求出,值;(2)首先將不等式轉化為函數,即將不等式右邊式子左移,得,構造函數并判斷其符號,這里應注意的取值范圍,從而證明不等式.【詳解】解:(1)由于直線的斜率為,且過點,故即解得,.(2)由(1)知,所以.考慮函數,,則.而,故當時,,所以,即.【點睛】本題考查了利用導數求切線的斜率,利用函數的導數研究函數的單調性、和最值問題,以及不等式證明問題,考查了分析及解決問題的能力,其中,不等式問題中結合構造函數實現正確轉換為最大值和最小值問題是關鍵.20、(1)見解析,沒有(2)見解析,【解析】
(1)根據題目所給數據填寫列聯表,計算出的值,由此判斷出沒有的把握認為喜歡閱讀中國古典文學與性別有關系.(2)先判斷出的所有可能取值,然后根據古典概型概率計算公式,計算出分布列并求得數學期望.【詳解】(1)男生女生總計喜歡閱讀中國古典文學423072不喜歡閱讀中國古典文學301848總計7248120所以,沒有的把握認為喜歡閱讀中國古典文學與性別有關系.(2)設參加座談會的男生中喜歡中國古典文學的人數為,女生中喜歡古典文學的人數為,則.且;;.所以的分布列為則.【點睛】本小題主要考查列聯表獨立性檢驗,考查隨機變量分布列和數學期望的求法,考查數據處理能力,屬于中檔題.21、(Ⅰ)見解析;(Ⅱ)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年鋁門窗數控雙頭切割鋸床項目可行性研究報告
- 探索城市更新新機遇的可行性分析報告
- 生石灰行業發展趨勢與市場潛力分析
- 課題開題報告:組態視角下城市碳中和路徑協同機理與優化策略研究
- 課題開題報告:專業學位研究生培養質量監測研究
- Cisco辦公自動化案例的分析
- 25年廠里廠里安全培訓考試試題答案4A
- 2025年項目部安全培訓考試試題含答案(基礎題)
- 基于極端梯度提升算法優化的細粒沉積巖巖性分類研究
- 明中后期至清前中期“上省”“下澳”貿易形態變化研究
- 2025年中國鐵塔考試試題及答案
- 2025年博士思政面試題及答案
- 專題12 將軍飲馬模型(解析版)
- 廣東省深圳市深圳實驗學校等校聯考2024-2025學年九年級下學期開學考試語文試題(含答案)
- 2025年浙江安防職業技術學院單招職業傾向性測試題庫1套
- 《園林景觀手繪技法表現》課件-項目2 景觀元素的表現技法
- 2024-2025學年人教版英語七年級下冊Unit 5 Here and now Section A Grammar教案
- 潔凈風管安裝施工方案
- 深圳廣東深圳市福田區慢性病防治院招聘工作人員筆試歷年典型考點(頻考版試卷)附帶答案詳解版
- 2025年長慶油田分公司招聘筆試參考題庫含答案解析
- 2025山西建設投資集團限公司總部中層管理人員競聘34人高頻重點提升(共500題)附帶答案詳解
評論
0/150
提交評論