




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.波羅尼斯(古希臘數學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.2.關于函數在區間的單調性,下列敘述正確的是()A.單調遞增 B.單調遞減 C.先遞減后遞增 D.先遞增后遞減3.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.84.已知,則,不可能滿足的關系是()A. B. C. D.5.已知函數滿足,當時,,則()A.或 B.或C.或 D.或6.定義在R上的函數,,若在區間上為增函數,且存在,使得.則下列不等式不一定成立的是()A. B.C. D.7.過拋物線的焦點F作兩條互相垂直的弦AB,CD,設P為拋物線上的一動點,,若,則的最小值是()A.1 B.2 C.3 D.48.已知函數,存在實數,使得,則的最大值為()A. B. C. D.9.過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標為3,且,則拋物線的方程是()A. B. C. D.10.展開項中的常數項為A.1 B.11 C.-19 D.5111.已知橢圓:的左、右焦點分別為,,點,在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.12.若等差數列的前項和為,且,,則的值為().A.21 B.63 C.13 D.84二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____.14.集合,,若是平面上正八邊形的頂點所構成的集合,則下列說法正確的為________①的值可以為2;②的值可以為;③的值可以為;15.如圖所示梯子結構的點數依次構成數列,則________.16.已知變量x,y滿足約束條件x-y≤0x+2y≤34x-y≥-6,則三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數的定義域為.(1)求實數的取值范圍;(2)設實數為的最小值,若實數,,滿足,求的最小值.18.(12分)如圖,平面四邊形為直角梯形,,,,將繞著翻折到.(1)為上一點,且,當平面時,求實數的值;(2)當平面與平面所成的銳二面角大小為時,求與平面所成角的正弦.19.(12分)已知x∈R,設,,記函數.(1)求函數取最小值時x的取值范圍;(2)設△ABC的角A,B,C所對的邊分別為a,b,c,若,,求△ABC的面積S的最大值.20.(12分)這次新冠肺炎疫情,是新中國成立以來在我國發生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發公共衛生事件.中華民族歷史上經歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現出既有責任擔當之勇、又有科學防控之智.某校高三學生也展開了對這次疫情的研究,一名同學在數據統計中發現,從2020年2月1日至2月7日期間,日期和全國累計報告確診病例數量(單位:萬人)之間的關系如下表:日期1234567全國累計報告確診病例數量(萬人)1.41.72.02.42.83.13.5(1)根據表中的數據,運用相關系數進行分析說明,是否可以用線性回歸模型擬合與的關系?(2)求出關于的線性回歸方程(系數精確到0.01).并預測2月10日全國累計報告確診病例數.參考數據:,,,.參考公式:相關系數回歸方程中斜率和截距的最小二乘估計公式分別為:,.21.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.22.(10分)已知,函數的最小值為1.(1)證明:.(2)若恒成立,求實數的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
求得定點M的軌跡方程可得,解得a,b即可.【詳解】設A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.2、C【解析】
先用誘導公式得,再根據函數圖像平移的方法求解即可.【詳解】函數的圖象可由向左平移個單位得到,如圖所示,在上先遞減后遞增.故選:C【點睛】本題考查三角函數的平移與單調性的求解.屬于基礎題.3、A【解析】
由三視圖還原出原幾何體,得出幾何體的結構特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關鍵.4、C【解析】
根據即可得出,,根據,,即可判斷出結果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【點睛】本題主要考查指數式和對數式的互化,對數的運算,以及基本不等式:和不等式的應用,屬于中檔題5、C【解析】
簡單判斷可知函數關于對稱,然后根據函數的單調性,并計算,結合對稱性,可得結果.【詳解】由,可知函數關于對稱當時,,可知在單調遞增則又函數關于對稱,所以且在單調遞減,所以或,故或所以或故選:C【點睛】本題考查函數的對稱性以及單調性求解不等式,抽象函數給出式子的意義,比如:,,考驗分析能力,屬中檔題.6、D【解析】
根據題意判斷出函數的單調性,從而根據單調性對選項逐個判斷即可.【詳解】由條件可得函數關于直線對稱;在,上單調遞增,且在時使得;又,,所以選項成立;,比離對稱軸遠,可得,選項成立;,,可知比離對稱軸遠,選項成立;,符號不定,,無法比較大小,不一定成立.故選:.【點睛】本題考查了函數的基本性質及其應用,意在考查學生對這些知識的理解掌握水平和分析推理能力.7、C【解析】
設直線AB的方程為,代入得:,由根與系數的關系得,,從而得到,同理可得,再利用求得的值,當Q,P,M三點共線時,即可得答案.【詳解】根據題意,可知拋物線的焦點為,則直線AB的斜率存在且不為0,設直線AB的方程為,代入得:.由根與系數的關系得,,所以.又直線CD的方程為,同理,所以,所以.故.過點P作PM垂直于準線,M為垂足,則由拋物線的定義可得.所以,當Q,P,M三點共線時,等號成立.故選:C.【點睛】本題考查直線與拋物線的位置關系、焦半徑公式的應用,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意取最值的條件.8、A【解析】
畫出分段函數圖像,可得,由于,構造函數,利用導數研究單調性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點睛】本題考查了導數在函數性質探究中的應用,考查了學生數形結合,轉化劃歸,綜合分析,數學運算的能力,屬于較難題.9、B【解析】
利用拋物線的定義可得,,把線段AB中點的橫坐標為3,代入可得p值,然后可得出拋物線的方程.【詳解】設拋物線的焦點為F,設點,由拋物線的定義可知,線段AB中點的橫坐標為3,又,,可得,所以拋物線方程為.故選:B.【點睛】本題考查拋物線的定義、標準方程,以及簡單性質的應用,利用拋物線的定義是解題的關鍵.10、B【解析】
展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質,即展開式中每一項是由每個括號各出一項相乘組合而成的.11、C【解析】
根據可得四邊形為矩形,設,,根據橢圓的定義以及勾股定理可得,再分析的取值范圍,進而求得再求離心率的范圍即可.【詳解】設,,由,,知,因為,在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C【點睛】本題主要考查了橢圓的定義運用以及構造齊次式求橢圓的離心率的問題,屬于中檔題.12、B【解析】
由已知結合等差數列的通項公式及求和公式可求,,然后結合等差數列的求和公式即可求解.【詳解】解:因為,,所以,解可得,,,則.故選:B.【點睛】本題主要考查等差數列的通項公式及求和公式的簡單應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對原方程兩邊求導,然后令求得表達式的值.【詳解】對等式兩邊求導,得,令,則.【點睛】本小題主要考查二項式展開式,考查利用導數轉化已知條件,考查賦值法,屬于中檔題.14、②③【解析】
根據對稱性,只需研究第一象限的情況,計算:,得到,,得到答案.【詳解】如圖所示:根據對稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點所構成的集合,故所在的直線的傾斜角為,,故:,解得,此時,,此時.故答案為:②③.【點睛】本題考查了根據集合的交集求參數,意在考查學生的計算能力和轉化能力,利用對稱性是解題的關鍵.15、【解析】
根據圖像歸納,根據等差數列求和公式得到答案.【詳解】根據圖像:,,故,故.故答案為:.【點睛】本題考查了等差數列的應用,意在考查學生的計算能力和應用能力.16、-5【解析】
畫出x,y滿足的可行域,當目標函數z=x-2y經過點A時,z最小,求解即可。【詳解】畫出x,y滿足的可行域,由x+2y=34x-y=-6解得A-1,2,當目標函數z=x-2y經過點A【點睛】本題考查的是線性規劃問題,解決線性規劃問題的實質是把代數問題幾何化,即數形結合思想。需要注意的是:一,準確無誤地作出可行域;二,畫目標函數所對應的直線時,要注意讓其斜率與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數的最大值或最小值會在可行域的端點或邊界上取得。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)首先通過對絕對值內式子符號的討論,將不等式轉化為一元一次不等式組,再分別解各不等式組,最后求各不等式組解集的并集,得到所求不等式的解集;(2)首先確定m的值,然后利用柯西不等式即可證得題中的不等式.【詳解】(1)因為函數定義域為,即恒成立,所以恒成立由單調性可知當時,有最大值為4,即;(2)由(1)知,,由柯西不等式知所以,即的最小值為.當且僅當,,時,等號成立【點睛】本題主要考查絕對值不等式的解法,柯西不等式及其應用,意在考查學生的轉化能力和計算求解能力.18、(1);(2).【解析】
(1)連接交于點,連接,利用線面平行的性質定理可推導出,然后利用平行線分線段成比例定理可求得的值;(2)取中點,連接、,過點作,則,作于,連接,推導出,,可得出為平面與平面所成的銳二面角,由此計算出、,并證明出平面,可得出直線與平面所成的角為,進而可求得與平面所成角的正弦值.【詳解】(1)連接交于點,連接,平面,平面,平面平面,,在梯形中,,則,,,,所以,;(2)取中點,連接、,過點作,則,作于,連接.為的中點,且,,且,所以,四邊形為平行四邊形,由于,,,,,,,為的中點,所以,,,同理,,,,平面,,,,為面與面所成的銳二面角,,,,,則,,,平面,平面,,,,面,為與底面所成的角,,,.在中,.因此,與平面所成角的正弦值為.【點睛】本題考查利用線面平行的性質求參數,同時也考查了線面角的計算,涉及利用二面角求線段長度,考查推理能力與計算能力,屬于中等題.19、(1);(2)【解析】
(1)先根據向量的數量積的運算,以及二倍角公式和兩角和的正弦公式化簡得到f(x)=,再根據正弦函數的性質即可求出答案;(2)先求出C的大小,再根據余弦定理和基本不等式,即可求出,根據三角形的面積公式即可求出答案.【詳解】(1).令,k∈Z,即時,,取最小值,所以,所求的取值集合是;(2)由,得,因為,所以,所以,.在中,由余弦定理,得,即,當且僅當時取等號,所以的面積,因此的面積的最大值為.【點睛】本題考查了向量的數量積的運算和二倍角公式,兩角和的正弦公式,余弦定理和基本不等式,三角形的面積公式,屬于中檔題.20、(1)可以用線性回歸模型擬合與的關系;(2),預測2月10日全國累計報告確診病例數約有4.5萬人.【解析】
(1)根據已知數據,利用公式求得,再根據的值越大說明它們的線性相關性越高來判斷.(2)由(1)的相關數據,求得,,寫出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數據得,,,所以,,所以.因為與的相關近似為0.99,說明它們的線性相關性相當高,從而可以用線性回歸模型擬合與的關系.(2)由(1)得,,,所以,關于的回歸方程為:,2月10日,即代入回歸方程得:.所以預測2月10日全國累計報告確診病例數約有4.5萬人.【點睛】本題主要考查線性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年軟考網絡管理員挑戰試題及答案
- 計算機安全策略與實施試題及答案
- 探討法學概論的學科建設試題及答案
- 2025屆江蘇省無錫市周鐵區聯盟七年級數學第二學期期末經典試題含解析
- 計算機技術員考試必考試題及答案
- 政策變化對2025年公司戰略的挑戰及試題及答案
- API設計的重要性試題及答案
- 對沖風險與信息技術的結合試題及答案
- 2025年軟考系統監控與管理試題及答案
- 2025年中國鋼塑防盜門市場調查研究報告
- 砂石料加工合同
- 食物損失和浪費控制程序
- 靜脈輸血技術操作并發癥的預防及處理
- 城鎮燃氣埋地鋼質管道腐蝕控制技術規程培訓
- 附件3:微創介入中心評審實施細則2024年修訂版
- 全國國道大全(包括里程及路過城市)
- 化學品作業場所安全警示標志大全
- 2024藥店質量負責人聘用合同范本
- CJ/T 156-2001 溝槽式管接頭
- 黑龍江省齊齊哈爾市五縣聯考2023-2024學年七年級下學期期末數學試題
- CJJT81-2013 城鎮供熱直埋熱水管道技術規程
評論
0/150
提交評論