




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中的系數為()A.5 B.10 C.20 D.302.下列函數中,在定義域上單調遞增,且值域為的是()A. B. C. D.3.設,,分別是中,,所對邊的邊長,則直線與的位置關系是()A.平行 B.重合C.垂直 D.相交但不垂直4.將函數的圖像向左平移個單位得到函數的圖像,則的最小值為()A. B. C. D.5.若復數滿足,則()A. B. C. D.6.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.7.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當球與上底面三條棱都相切時球心到下底面距離為8,則球的體積為()A.1605π3 B.6428.設,則(
)A.10 B.11 C.12 D.139.已知數列中,,若對于任意的,不等式恒成立,則實數的取值范圍為()A. B.C. D.10.已知雙曲線的左、右頂點分別為,點是雙曲線上與不重合的動點,若,則雙曲線的離心率為()A. B. C.4 D.211.已知函數,,若成立,則的最小值為()A.0 B.4 C. D.12.在我國傳統文化“五行”中,有“金、木、水、火、土”五個物質類別,在五者之間,有一種“相生”的關系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關系的概率是()A.0.2 B.0.5 C.0.4 D.0.8二、填空題:本題共4小題,每小題5分,共20分。13.過點,且圓心在直線上的圓的半徑為__________.14.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)15.曲線在處的切線的斜率為________.16.已知四棱錐的底面ABCD是邊長為2的正方形,且.若四棱錐P-ABCD的五個頂點在以4為半徑的同一球面上,當PA最長時,則______________;四棱錐P-ABCD的體積為______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在極坐標系中,已知曲線C的方程為(),直線l的方程為.設直線l與曲線C相交于A,B兩點,且,求r的值.18.(12分)已知拋物線的頂點為原點,其焦點關于直線的對稱點為,且.若點為的準線上的任意一點,過點作的兩條切線,其中為切點.(1)求拋物線的方程;(2)求證:直線恒過定點,并求面積的最小值.19.(12分)已知直線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.20.(12分)在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數方程為(t為參數),曲線C的極坐標方程為ρ=4sin(θ+).(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C交于M,N兩點,求△MON的面積.21.(12分)已知函數(1)當時,若恒成立,求的最大值;(2)記的解集為集合A,若,求實數的取值范圍.22.(10分)已知函數,若的解集為.(1)求的值;(2)若正實數,,滿足,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
由知,展開式中項有兩項,一項是中的項,另一項是與中含x的項乘積構成.【詳解】由已知,,因為展開式的通項為,所以展開式中的系數為.故選:C.【點睛】本題考查求二項式定理展開式中的特定項,解決這類問題要注意通項公式應寫準確,本題是一道基礎題.2.B【解析】
分別作出各個選項中的函數的圖象,根據圖象觀察可得結果.【詳解】對于,圖象如下圖所示:則函數在定義域上不單調,錯誤;對于,的圖象如下圖所示:則在定義域上單調遞增,且值域為,正確;對于,的圖象如下圖所示:則函數單調遞增,但值域為,錯誤;對于,的圖象如下圖所示:則函數在定義域上不單調,錯誤.故選:.【點睛】本題考查函數單調性和值域的判斷問題,屬于基礎題.3.C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點:直線與直線的位置關系4.B【解析】
根據三角函數的平移求出函數的解析式,結合三角函數的性質進行求解即可.【詳解】將函數的圖象向左平移個單位,得到,此時與函數的圖象重合,則,即,,當時,取得最小值為,故選:.【點睛】本題主要考查三角函數的圖象和性質,利用三角函數的平移關系求出解析式是解決本題的關鍵.5.B【解析】
由題意得,,求解即可.【詳解】因為,所以.故選:B.【點睛】本題考查復數的四則運算,考查運算求解能力,屬于基礎題.6.B【解析】
利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.【點睛】本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應用,考查運算求解能力,屬于中等題.7.A【解析】
設球心為O,三棱柱的上底面ΔA1B1C1的內切圓的圓心為O1,該圓與邊B【詳解】如圖,設三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設球心為O,則由球的幾何知識得ΔOO1M所以OM=2即球O的半徑為25所以球O的體積為43故選A.【點睛】本題考查與球有關的組合體的問題,解答本題的關鍵有兩個:(1)構造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內求出球的半徑,這是解決與球有關的問題時常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內切圓的半徑r=a+b-c8.B【解析】
根據題中給出的分段函數,只要將問題轉化為求x≥10內的函數值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點睛】本題主要考查了分段函數中求函數的值,屬于基礎題.9.B【解析】
先根據題意,對原式進行化簡可得,然后利用累加法求得,然后不等式恒成立轉化為恒成立,再利用函數性質解不等式即可得出答案.【詳解】由題,即由累加法可得:即對于任意的,不等式恒成立即令可得且即可得或故選B【點睛】本題主要考查了數列的通項的求法以及函數的性質的運用,屬于綜合性較強的題目,解題的關鍵是能夠由遞推數列求出通項公式和后面的轉化函數,屬于難題.10.D【解析】
設,,,根據可得①,再根據又②,由①②可得,化簡可得,即可求出離心率.【詳解】解:設,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點睛】本題考查雙曲線的方程和性質,考查了斜率的計算,離心率的求法,屬于基礎題和易錯題.11.A【解析】
令,進而求得,再轉化為函數的最值問題即可求解.【詳解】∵∴(),∴,令:,,在上增,且,所以在上減,在上增,所以,所以的最小值為0.故選:A【點睛】本題主要考查了導數在研究函數最值中的應用,考查了轉化的數學思想,恰當的用一個未知數來表示和是本題的關鍵,屬于中檔題.12.B【解析】
利用列舉法,結合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據弦的垂直平分線經過圓心,結合圓心所在直線方程,即可求得圓心坐標.由兩點間距離公式,即可得半徑.【詳解】因為圓經過點則直線的斜率為所以與直線垂直的方程斜率為點的中點坐標為所以由點斜式可得直線垂直平分線的方程為,化簡可得而弦的垂直平分線經過圓心,且圓心在直線上,設圓心所以圓心滿足解得所以圓心坐標為則圓的半徑為故答案為:【點睛】本題考查了直線垂直時的斜率關系,直線與直線交點的求法,直線與圓的位置關系,圓的半徑的求法,屬于基礎題.14.充分不必要【解析】
由余弦的二倍角公式可得,即或,即可判斷命題的關系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應用.15.【解析】
求出函數的導數,利用導數的幾何意義令,即可求出切線斜率.【詳解】,,,即曲線在處的切線的斜率.故答案為:【點睛】本題考查了導數的幾何意義、導數的運算法則以及基本初等函數的導數,屬于基礎題.16.90°【解析】
易得平面PAD,P點在與BA垂直的圓面內運動,顯然,PA是圓的直徑時,PA最長;將四棱錐補形為長方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點在與BA垂直的圓面內運動,易知,當P、、A三點共線時,PA達到最長,此時,PA是圓的直徑,則;又,所以平面ABCD,此時可將四棱錐補形為長方體,其體對角線為,底面邊長為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).【點睛】本題四棱錐外接球有關的問題,考查學生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.【解析】
先將曲線C和直線l的極坐標方程化為直角坐標方程,可得圓心到直線的距離,再由勾股定理,計算即得.【詳解】以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,可得曲線C:()的直角坐標方程為,表示以原點為圓心,半徑為r的圓.由直線l的方程,化簡得,則直線l的直角坐標方程方程為.記圓心到直線l的距離為d,則,又,即,所以.【點睛】本題考查曲線和直線的極坐標方程化為直角坐標方程,是基礎題.18.(1)(2)見解析,最小值為4【解析】
(1)根據焦點到直線的距離列方程,求得的值,由此求得拋物線的方程.(2)設出的坐標,利用導數求得切線的方程,由此判斷出直線恒過拋物線焦點.求得三角形面積的表達式,進而求得面積的最小值.【詳解】(1)依題意,解得(負根舍去)∴拋物線的方程為(2)設點,由,即,得∴拋物線在點處的切線的方程為,即∵,∴∵點在切線上,①,同理,②綜合①、②得,點的坐標都滿足方程.即直線恒過拋物線焦點當時,此時,可知:當,此時直線直線的斜率為,得于是,而把直線代入中消去得,即:當時,最小,且最小值為4【點睛】本小題主要考查點到直線的距離公式,考查拋物線方程的求法,考查拋物線的切線方程的求法,考查直線過定點問題,考查拋物線中三角形面積的最值的求法,考查運算求解能力,屬于難題.19.(1)直線普通方程:,曲線直角坐標方程:;(2).【解析】
(1)消去直線參數方程中的參數即可得到其普通方程;將曲線極坐標方程化為,根據極坐標和直角坐標互化原則可得其直角坐標方程;(2)將直線參數方程代入曲線的直角坐標方程,根據參數的幾何意義可知,利用韋達定理求得結果.【詳解】(1)由直線參數方程消去可得普通方程為:曲線極坐標方程可化為:則曲線的直角坐標方程為:,即(2)將直線參數方程代入曲線的直角坐標方程,整理可得:設兩點對應的參數分別為:,則,【點睛】本題考查極坐標與直角坐標的互化、參數方程與普通方程的互化、直線參數方程中參數的幾何意義的應用;求解距離之和的關鍵是能夠明確直線參數方程中參數的幾何意義,利用韋達定理來進行求解.20.(1)直線l的普通方程為x+y-4=0.曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)4【解析】
(1)將直線l參數方程中的消去,即可得直線l的普通方程,對曲線C的極坐標方程兩邊同時乘以,利用可得曲線C的直角坐標方程;(2)求出點到直線的距離,再求出的弦長,從而得出△MON的面積.【詳解】解:(1)由題意有,得,x+y=4,直線l的普通方程為x+y-4=0.因為ρ=4sin所以ρ=2sinθ+2cosθ,兩邊同時乘以得,ρ2=2ρsinθ+2ρcosθ,因為,所以x2+y2=2y+2x,即(x-)2+(y-1)2=4,∴曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)∵原點O到直線l的距離直線l過圓C的圓心(,1),∴|MN|=2r=4,所以△MON的面積S=|MN|×d=4.【點睛】本題考查了直線與圓的極坐標方程與普通方程、參數方程與普通方程的互化知識,解題的關鍵是正確使用這一轉化公式,還考查了直線與圓的位置關系等知識.21.(1);(2)【解析】
(1)當時,由題意得到,令,分類討論求得函數的最小值,即可求得的最大值.(2)由時,不等式恒成立,轉化為在上恒成立,得到,即可求解.【詳解】(1)由題意,當時,由,可得,令,則只需,當時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 微生物檢驗常識考核試題及答案
- 2025年證券從業資格證考試專業試題及答案
- 關注網絡環境下的學生品德教育計劃
- 采購與供應鏈協同創新激勵機制重點基礎知識點
- 2025年考試內容解析證券從業試題及答案
- 項目管理專業考試結構詳細解讀試題及答案
- 心態調整銀行從業資格證試題及答案
- 深度備考特許金融分析師考試試題及答案
- 2025年注冊會計師考試最佳實踐試題及答案
- 項目管理信息溝通機制試題及答案
- 《3-6歲兒童學習與發展指南》藝術領域 -5-6歲
- 液壓知識培訓課件
- 冷鏈物流建設施工方案
- 中考體育培訓課件
- 審計常用定性表述及適用法規向導-教科文衛法規向導
- 以一流課程建設為導向的概率論與數理統計課程教學改革與實踐
- 音樂課件《節奏與節拍》
- 物理教師老師個人簡歷
- 預防頸椎病的健康宣教
- 光伏工程施工安全方案
- 聲樂課課件教學
評論
0/150
提交評論