




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省常德市坡頭鎮聯校2022高二數學理期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.已知橢圓的離心率為,過右焦點且斜率為的直線與相交于兩點.若,則A.1
B.
C.
D.2參考答案:B略2.“”是“”的(
)A.充分而不必要條件
B.必要而不充分條件C.充分必要條件
D.既不充分也不必要條件參考答案:A略3.使不等式成立的的取值范圍是A.
B.
C.
D..參考答案:B略4.經過圓的圓心,且與直線垂直的直線方程是A.
B.
C.
D.參考答案:B略5.函數的定義域為
(
).A.[1,2)∪(2,+∞)
B.(1,+∞)
C.[1,2)
D.[1,+∞)參考答案:A略6.在數列{an}中,a1=2,2an+1﹣2an=1,則a101的值為()A.49 B.50 C.51 D.52參考答案:D【考點】等差數列的通項公式.【分析】由數列遞推式得到數列是等差數列并求得公差,代入等差數列的通項公式得答案.【解答】解:在數列{an}中,a1=2,由2an+1﹣2an=1,得.∴數列{an}是首項為2,公差為的等差數列,∴.故選:D.7.已知橢圓方程,過其右焦點做斜率不為0的直線與橢圓交于兩點,設在兩點處的切線交于點,則點的橫坐標的取值范圍是A.
B.
C.
D.參考答案:A略8.在等差數列{an}中,若a5,a7是方程x2﹣2x﹣6=0的兩根,則{an}的前11項的和為()A.22 B.﹣33 C.﹣11 D.11參考答案:D【考點】等差數列的前n項和.【分析】根據等差數列和根與系數的關系,求出a5+a7的值,再求{an}的前11項和.【解答】解:等差數列{an}中,若a5,a7是方程x2﹣2x﹣6=0的兩根,則a5+a7=2,∴a6=(a5+a7)=1,∴{an}的前11項的和為S11==11a6=11×1=11.故選:D.【點評】本題考查了等差數列和根與系數的關系應用問題,是基礎題目.9.在△abc中,已知a=4,b=6,∠c=120°,則sina的值為().a.
b.
c.
d.參考答案:A10.設拋物線的頂點在原點,準線方程為,則拋物線的方程是(
)A.
B.
C.
D.
參考答案:C二、填空題:本大題共7小題,每小題4分,共28分11.不等式的解為
參考答案:略12.圓截直線所得弦長等于
.參考答案:略13.已知復數,其中i是虛數單位,復數z滿足,則復數z的模等于__________.參考答案:【分析】可設出復數z,通過復數相等建立方程組,從而求得復數的模.【詳解】由題意可設,由于,所以,因此,解得,因此復數的模為:.【點睛】本題主要考查復數的四則運算,相等的條件,比較基礎.14.
.參考答案:15.設實數x,y滿足參考答案:略16.將二進制數化為十進制數,結果為__________參考答案:4517.為了了解參加運動會的2000名運動員的年齡情況,從中抽取100名運動員;就這個問題,下列說法中正確的有;①2000名運動員是總體;②每個運動員是個體;③所抽取的100名運動員是一個樣本;④樣本容量為100;⑤這個抽樣方法可采用按年齡進行分層抽樣;⑥每個運動員被抽到的概率相等.參考答案:④,⑤,⑥【考點】收集數據的方法.【分析】2000名運動員的年齡是總體,每個運動員的年齡是個體,所抽取的100名運動員的年齡是一個樣本,樣本容量為100,這個抽樣方法可采用按年齡進行分層抽樣,每個運動員被抽到的概率相等.【解答】解:④,⑤,⑥正確,∵2000名運動員的年齡情況是總體;每個運動員的年齡是個體,所抽取的100名運動員的年齡是一個樣本,樣本容量為100,這個抽樣方法可采用按年齡進行分層抽樣,每個運動員被抽到的概率相等.故答案為:④,⑤,⑥.三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.設命題p:實數x滿足x2﹣4ax+3a2<0,其中a>0,命題q:實數x滿足.(1)若a=1,且p∧q為真,求實數x的取值范圍;(2)若?p是?q的充分不必要條件,求實數a的取值范圍.參考答案:【考點】復合命題的真假;必要條件、充分條件與充要條件的判斷.【專題】簡易邏輯.【分析】(1)現將a=1代入命題p,然后解出p和q,又p∧q為真,所以p真且q真,求解實數a的取值范圍;(2)先由¬p是¬q的充分不必要條件得到q是p的充分不必要條件,然后化簡命題,求解實數a的范圍.【解答】解:(1)當a=1時,p:{x|1<x<3},q:{x|2<x≤3},又p∧q為真,所以p真且q真,由得2<x<3,所以實數x的取值范圍為(2,3)(2)因為¬p是¬q的充分不必要條件,所以q是p的充分不必要條件,又p:{x|a<x<3a}(a>0),q:{x|2<x≤3},所以解得1<a≤2,所以實數a的取值范圍是(1,2]【點評】充要條件要抓住“大能推小,小不能推大”規律去推導.19.(本小題滿分12分)已知函數f(x)=x3+ax2-bx(a,b∈R).若y=f(x)圖象上的點處的切線斜率為-4,求y=f(x)的極大值.參考答案:解:(1)∵f′(x)=x2+2ax-b,∴由題意可知:f′(1)=-4且f(1)=-.即解得∴f(x)=x3-x2-3x,f′(x)=x2-2x-3=(x+1)(x-3).令f′(x)=0,得x1=-1,x2=3.由此可知,當x變化時,f′(x),f(x)的變化情況如下表:x(-∞,-1)-1(-1,3)3(3,+∞)f′(x)+0-0+f(x)↗極大值↘極小值↗∴當x=-1時,f(x)取極大值.20.已知命題p:任意x∈R,x2+1≥a,命題q:方程﹣=1表示雙曲線.(1)若命題p為真命題,求實數a的取值范圍;(2)若“p且q”為真命題,求實數a的取值范圍.參考答案:解(1)記f(x)=x2+1,x∈R,則f(x)的最小值為1,因為命題p為真命題,所以a≤f(x)min=1,即a的取值范圍為(﹣∞,1].
(2)因為q為真命題,所以a+2>0,解得a>﹣2.因為“p且q”為真命題,所以即a的取值范圍為(﹣2,1]略21.如圖,某市新體育公園的中心廣場平面圖如圖所示,在y軸左側的觀光道曲線段是函數,時的圖象且最高點B(-1,4),在y軸右側的曲線段是以CO為直徑的半圓弧.⑴試確定A,和的值;⑵現要在右側的半圓中修建一條步行道CDO(單位:米),在點C與半圓弧上的一點D之間設計為直線段(造價為2萬元/米),從D到點O之間設計為沿半圓弧的弧形(造價為1萬元/米).設(弧度),試用來表示修建步行道的造價預算,并求造價預算的最大值?(注:只考慮步行道的長度,不考慮步行道的寬度)參考答案:解:⑴因為最高點B(-1,4),所以A=4;又,所以,因為
代入點B(-1,4),,又;
⑵由⑴可知:,得點C即,取CO中點F,連結DF,因為弧CD為半圓弧,所以,即,則圓弧段造價預算為萬元,中,,則直線段CD造價預算為萬元,所以步行道造價預算,.
由得當時,,當時,,即在上單調遞增;當時,,即在上單調遞減所以在時取極大值,也即造價預算最大值為()萬元.略22.
已知等差數列滿足:,.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧省部分重點中學協作體2025年4月高考模擬考試英語試題(含答案無聽力原文及音頻)
- 吉林省松原市前郭縣2024~2025學年度下學期東北三省精準教學2025年4月高三聯考 語文 強化卷(含答題卡、答案及解析)
- 鐵路旅客運輸投訴處理課件
- 鐵路工程安全技術石家莊鐵路16課件
- 2025年特種設備作業人員氣瓶充裝P證考試題庫
- 中國交響樂賞析課件
- 大學生職業規劃大賽《服裝設計與工程專業》生涯發展展示
- 醫療器械租賃合同示范文本
- 企業運營項目管理咨詢服務合同
- 產品代購合同協議書
- 公交車預防春困
- 涂層與基材結合強度-洞察分析
- 網絡安全服務方案
- 板翅式換熱器介紹
- 人教九年級語文上冊《沁園春 雪》示范課教學課件
- 團體旅游餐飲供餐合同協議
- 養殖項目的水土保持方案
- 中建通風與空調工程施工方案全套范本
- 醫療代表陌生拜訪
- 中華人民共和國關稅法
- 山西同文職業技術學院嬰幼兒托育服務與管理人才培養方案
評論
0/150
提交評論