




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若A(﹣4,y1),B(﹣3,y2),C(1,y3)為二次函數y=x2﹣4x+m的圖象上的三點,則y1,y2,y3的大小關系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y22.將函數的圖象用下列方法平移后,所得的圖象不經過點A(1,4)的方法是()A.向左平移1個單位 B.向右平移3個單位C.向上平移3個單位 D.向下平移1個單位3.學習全等三角形時,數學興趣小組設計并組織了“生活中的全等”的比賽,全班同學的比賽結果統計如下表:得分(分)60708090100人數(人)7121083則得分的眾數和中位數分別為()A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分4.如果k<0,b>0,那么一次函數y=kx+b的圖象經過()A.第一、二、三象限 B.第二、三、四象限C.第一、三、四象限 D.第一、二、四象限5.已知x2-2x-3=0,則2x2-4x的值為()A.-6 B.6 C.-2或6 D.-2或306.如圖,過點A(4,5)分別作x軸、y軸的平行線,交直線y=﹣x+6于B、C兩點,若函數y=(x>0)的圖象△ABC的邊有公共點,則k的取值范圍是()A.5≤k≤20 B.8≤k≤20 C.5≤k≤8 D.9≤k≤207.由6個大小相同的正方體搭成的幾何體如圖所示,比較它的正視圖、左視圖和俯視圖的面積,則()A.三個視圖的面積一樣大 B.主視圖的面積最小C.左視圖的面積最小 D.俯視圖的面積最小8.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數為()A.50° B.110° C.130° D.150°9.計算-4-|-3|的結果是()A.-1B.-5C.1D.510.輪船沿江從港順流行駛到港,比從港返回港少用3小時,若船速為26千米/時,水速為2千米/時,求港和港相距多少千米.設港和港相距千米.根據題意,可列出的方程是().A. B.C. D.11.一個布袋內只裝有1個黑球和2個白球,這些球除顏色不同外其余都相同,隨機摸出一個球后放回攪勻,再隨機摸出一個球,則兩次摸出的球都是黑球的概率是()A. B. C. D.12.小明同學在學習了全等三角形的相關知識后發現,只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據是()A.角的內部到角的兩邊的距離相等的點在角的平分線上B.角平分線上的點到這個角兩邊的距離相等C.三角形三條角平分線的交點到三條邊的距離相等D.以上均不正確二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一輛汽車在坡度為的斜坡上向上行駛130米,那么這輛汽車的高度上升了__________米.14.關于的方程有兩個不相等的實數根,那么的取值范圍是__________.15.計算的結果等于______________________.16.若關于x的一元二次方程有兩個不相等的實數根,則k的取值范圍是______.17.設[x)表示大于x的最小整數,如[3)=4,[?1.2)=?1,則下列結論中正確的是______.(填寫所有正確結論的序號)①[0)=0;②[x)?x的最小值是0;③[x)?x的最大值是0;④存在實數x,使[x)?x=0.5成立.18.二次函數的圖象如圖,若一元二次方程有實數根,則的最大值為___三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某公司計劃購買A,B兩種型號的電腦,已知購買一臺A型電腦需0.6萬元,購買一臺B型電腦需0.4萬元,該公司準備投入資金y萬元,全部用于購進35臺這兩種型號的電腦,設購進A型電腦x臺.(1)求y關于x的函數解析式;(2)若購進B型電腦的數量不超過A型電腦數量的2倍,則該公司至少需要投入資金多少萬元?20.(6分)如圖,AB是半徑為2的⊙O的直徑,直線l與AB所在直線垂直,垂足為C,OC=3,P是圓上異于A、B的動點,直線AP、BP分別交l于M、N兩點.(1)當∠A=30°時,MN的長是;(2)求證:MC?CN是定值;(3)MN是否存在最大或最小值,若存在,請寫出相應的最值,若不存在,請說明理由;(4)以MN為直徑的一系列圓是否經過一個定點,若是,請確定該定點的位置,若不是,請說明理由.21.(6分)下面是“作三角形一邊上的高”的尺規作圖過程.已知:△ABC.求作:△ABC的邊BC上的高AD.作法:如圖2,(1)分別以點B和點C為圓心,BA,CA為半徑作弧,兩弧相交于點E;(2)作直線AE交BC邊于點D.所以線段AD就是所求作的高.請回答:該尺規作圖的依據是______.22.(8分)定義:和三角形一邊和另兩邊的延長線同時相切的圓叫做三角形這邊上的旁切圓.如圖所示,已知:⊙I是△ABC的BC邊上的旁切圓,E、F分別是切點,AD⊥IC于點D.(1)試探究:D、E、F三點是否同在一條直線上?證明你的結論.(2)設AB=AC=5,BC=6,如果△DIE和△AEF的面積之比等于m,,試作出分別以,為兩根且二次項系數為6的一個一元二次方程.23.(8分)在等邊△ABC外側作直線AM,點C關于AM的對稱點為D,連接BD交AM于點E,連接CE,CD,AD.(1)依題意補全圖1,并求∠BEC的度數;(2)如圖2,當∠MAC=30°時,判斷線段BE與DE之間的數量關系,并加以證明;(3)若0°<∠MAC<120°,當線段DE=2BE時,直接寫出∠MAC的度數.24.(10分)如圖,在每個小正方形的邊長為1的網格中,點A、B、C均在格點上.(I)AC的長等于_____.(II)若AC邊與網格線的交點為P,請找出兩條過點P的直線來三等分△ABC的面積.請在如圖所示的網格中,用無刻度的直尺,畫出這兩條直線,并簡要說明這兩條直線的位置是如何找到的_____(不要求證明).25.(10分)小馬虎做一道數學題,“已知兩個多項式,,試求.”其中多項式的二次項系數印刷不清楚.小馬虎看答案以后知道,請你替小馬虎求出系數“”;在(1)的基礎上,小馬虎已經將多項式正確求出,老師又給出了一個多項式,要求小馬虎求出的結果.小馬虎在求解時,誤把“”看成“”,結果求出的答案為.請你替小馬虎求出“”的正確答案.26.(12分)如圖,AB是⊙O的直徑,D是⊙O上一點,點E是AC的中點,過點A作⊙O的切線交BD的延長線于點F.連接AE并延長交BF于點C.(1)求證:AB=BC;(2)如果AB=5,tan∠FAC=,求FC的長.27.(12分)九年級學生到距離學校6千米的百花公園去春游,一部分學生步行前往,20分鐘后另一部分學生騎自行車前往,設(分鐘)為步行前往的學生離開學校所走的時間,步行學生走的路程為千米,騎自行車學生騎行的路程為千米,關于的函數圖象如圖所示.(1)求關于的函數解析式;(2)步行的學生和騎自行車的學生誰先到達百花公園,先到了幾分鐘?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據函數解析式的特點,其對稱軸為x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在對稱軸左側,圖象開口向上,利用y隨x的增大而減小,可判斷y3<y2<y1.【詳解】拋物線y=x2﹣4x+m的對稱軸為x=2,當x<2時,y隨著x的增大而減小,因為-4<-3<1<2,所以y3<y2<y1,故選B.【點睛】本題考查了二次函數的性質,二次函數圖象上點的坐標特征,熟練掌握二次函數的增減性是解題的關鍵.2、D【解析】A.平移后,得y=(x+1)2,圖象經過A點,故A不符合題意;B.平移后,得y=(x?3)2,圖象經過A點,故B不符合題意;C.平移后,得y=x2+3,圖象經過A點,故C不符合題意;D.平移后,得y=x2?1圖象不經過A點,故D符合題意;故選D.3、C【解析】
解:根據表格中的數據,可知70出現的次數最多,可知其眾數為70分;把數據按從小到大排列,可知其中間的兩個的平均數為80分,故中位數為80分.故選C.【點睛】本題考查數據分析.4、D【解析】
根據k、b的符號來求確定一次函數y=kx+b的圖象所經過的象限.【詳解】∵k<0,
∴一次函數y=kx+b的圖象經過第二、四象限.
又∵b>0時,
∴一次函數y=kx+b的圖象與y軸交與正半軸.
綜上所述,該一次函數圖象經過第一、二、四象限.
故選D.【點睛】本題主要考查一次函數圖象在坐標平面內的位置與k、b的關系.解答本題注意理解:直線y=kx+b所在的位置與k、b的符號有直接的關系.k>0時,直線必經過一、三象限.k<0時,直線必經過二、四象限.b>0時,直線與y軸正半軸相交.b=0時,直線過原點;b<0時,直線與y軸負半軸相交.5、B【解析】方程兩邊同時乘以2,再化出2x2-4x求值.解:x2-2x-3=0
2×(x2-2x-3)=0
2×(x2-2x)-6=0
2x2-4x=6
故選B.6、A【解析】若反比例函數與三角形交于A(4,5),則k=20;若反比例函數與三角形交于C(4,2),則k=8;若反比例函數與三角形交于B(1,5),則k=5.故.故選A.7、C【解析】試題分析:根據三視圖的意義,可知正視圖由5個面,左視圖有3個面,俯視圖有4個面,故可知主視圖的面積最大.故選C考點:三視圖8、C【解析】
如圖,根據長方形的性質得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質,三角形外角的性質等,準確識圖是解題的關鍵.9、B【解析】
原式利用算術平方根定義,以及絕對值的代數意義計算即可求出值.【詳解】原式=-2-3=-5,故選:B.【點睛】此題考查了實數的運算,熟練掌握運算法則是解本題的關鍵.10、A【解析】
通過題意先計算順流行駛的速度為26+2=28千米/時,逆流行駛的速度為:26-2=24千米/時.根據“輪船沿江從A港順流行駛到B港,比從B港返回A港少用3小時”,得出等量關系,據此列出方程即可.【詳解】解:設A港和B港相距x千米,可得方程:故選:A.【點睛】本題考查了由實際問題抽象出一元一次方程,抓住關鍵描述語,找到等量關系是解決問題的關鍵.順水速度=水流速度+靜水速度,逆水速度=靜水速度-水流速度.11、D【解析】試題分析:列表如下
黑
白1
白2
黑
(黑,黑)
(白1,黑)
(白2,黑)
白1
(黑,白1)
(白1,白1)
(白2,白1)
白2
(黑,白2)
(白1,白2)
(白2,白2)
由表格可知,隨機摸出一個球后放回攪勻,再隨機摸出一個球所以的結果有9種,兩次摸出的球都是黑球的結果有1種,所以兩次摸出的球都是黑球的概率是.故答案選D.考點:用列表法求概率.12、A【解析】
過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,因為是兩把完全相同的長方形直尺,可得CE=CF,再根據角的內部到角的兩邊的距離相等的點在這個角的平分線上可得OP平分∠AOB【詳解】如圖所示:過兩把直尺的交點C作CF⊥BO與點F,由題意得CE⊥AO,∵兩把完全相同的長方形直尺,∴CE=CF,∴OP平分∠AOB(角的內部到角的兩邊的距離相等的點在這個角的平分線上),故選A.【點睛】本題主要考查了基本作圖,關鍵是掌握角的內部到角的兩邊的距離相等的點在這個角的平分線上這一判定定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、50.【解析】
根據坡度的定義可以求得AC、BC的比值,根據AC、BC的比值和AB的長度即可求得AC的值,即可解題.【詳解】解:如圖,米,設,則,則,解得,故答案為:50.【點睛】本題考查了勾股定理在直角三角形中的運用,坡度的定義及直角三角形中三角函數值的計算,屬于基礎題.14、且【解析】分析:根據一元二次方程的定義以及根的判別式的意義可得△=4-12m>1且m≠1,求出m的取值范圍即可.詳解:∵一元二次方程mx2-2x+3=1有兩個不相等的實數根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<且m≠1,故答案為:m<且m≠1.點睛:本題考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c為常數)根的判別式△=b2-4ac.當△>1,方程有兩個不相等的實數根;當△=1,方程有兩個相等的實數根;當△<1,方程沒有實數根.也考查了一元二次方程的定義.15、【解析】
根據完全平方式可求解,完全平方式為【詳解】【點睛】此題主要考查二次根式的運算,完全平方式的正確運用是解題關鍵16、k<5且k≠1.【解析】試題解析:∵關于x的一元二次方程有兩個不相等的實數根,解得:且故答案為且17、④【解析】
根據題意[x)表示大于x的最小整數,結合各項進行判斷即可得出答案.【詳解】①[0)=1,故本項錯誤;②[x)?x>0,但是取不到0,故本項錯誤;③[x)?x?1,即最大值為1,故本項錯誤;④存在實數x,使[x)?x=0.5成立,例如x=0.5時,故本項正確.故答案是:④.【點睛】此題考查運算的定義,解題關鍵在于理解題意的運算法則.18、3【解析】試題解析::∵拋物線的開口向上,頂點縱坐標為-3,∴a>1.-=-3,即b2=12a,∵一元二次方程ax2+bx+m=1有實數根,∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,∴m的最大值為3,三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=0.2x+14(0<x<35);(2)該公司至少需要投入資金16.4萬元.【解析】
(1)根據題意列出關于x、y的方程,整理得到y關于x的函數解析式;(2)解不等式求出x的范圍,根據一次函數的性質計算即可.【詳解】解:(1)由題意得,0.6x+0.4×(35﹣x)=y,整理得,y=0.2x+14(0<x<35);(2)由題意得,35﹣x≤2x,解得,x≥,則x的最小整數為12,∵k=0.2>0,∴y隨x的增大而增大,∴當x=12時,y有最小值16.4,答:該公司至少需要投入資金16.4萬元.【點睛】本題考查的是一次函數的應用、一元一次不等式的應用,掌握一次函數的性質是解題的關鍵.20、(1);(2)MC?NC=5;(3)a+b的最小值為2;(4)以MN為直徑的一系列圓經過定點D,此定點D在直線AB上且CD的長為.【解析】
(1)由題意得AO=OB=2、OC=3、AC=5、BC=1,根據MC=ACtan∠A=、CN=可得答案;(2)證△ACM∽△NCB得,由此即可求得答案;(3)設MC=a、NC=b,由(2)知ab=5,由P是圓上異于A、B的動點知a>0,可得b=(a>0),根據反比例函數的性質得a+b不存在最大值,當a=b時,a+b最小,據此求解可得;(4)設該圓與AC的交點為D,連接DM、DN,證△MDC∽△DNC得,即MC?NC=DC2=5,即DC=,據此知以MN為直徑的一系列圓經過定點D,此頂點D在直線AB上且CD的長為.【詳解】(1)如圖所示,根據題意知,AO=OB=2、OC=3,則AC=OA+OC=5,BC=OC﹣OB=1,∵AC⊥直線l,∴∠ACM=∠ACN=90°,∴MC=ACtan∠A=5×=,∵∠ABP=∠NBC,∴∠BNC=∠A=30°,∴CN=,則MN=MC+CN=+=,故答案為:;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC?NC=AC?BC=5×1=5;(3)設MC=a、NC=b,由(2)知ab=5,∵P是圓上異于A、B的動點,∴a>0,∴b=(a>0),根據反比例函數的性質知,a+b不存在最大值,當a=b時,a+b最小,由a=b得a=,解之得a=(負值舍去),此時b=,此時a+b的最小值為2;(4)如圖,設該圓與AC的交點為D,連接DM、DN,∵MN為直徑,∴∠MDN=90°,則∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,則△MDC∽△DNC,∴,即MC?NC=DC2,由(2)知MC?NC=5,∴DC2=5,∴DC=,∴以MN為直徑的一系列圓經過定點D,此定點D在直線AB上且CD的長為.【點睛】本題考查的是圓的綜合問題,解題的關鍵是掌握相似三角形的判定與性質、三角函數的應用、反比例函數的性質等知識點.21、到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上;三角形的高的定義;兩點確定一條直線【解析】
利用作法和線段垂直平分線定理的逆定理可得到BC垂直平分AE,然后根據三角形高的定義得到AD為高【詳解】解:由作法得BC垂直平分AE,所以該尺規作圖的依據為到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上;三角形的高的定義;兩點確定一條直線.故答案為到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上;三角形的高的定義;兩點確定一條直線.【點睛】此題考查三角形高的定義,解題的關鍵在于利用線段垂直平分線定理的逆定理求解.22、(1)D、E、F三點是同在一條直線上.(2)6x2﹣13x+6=1.【解析】(1)利用切線長定理及梅氏定理即可求證;(2)利用相似和韋達定理即可求解.解:(1)結論:D、E、F三點是同在一條直線上.證明:分別延長AD、BC交于點K,由旁切圓的定義及題中已知條件得:AD=DK,AC=CK,再由切線長定理得:AC+CE=AF,BE=BF,∴KE=AF.∴,由梅涅勞斯定理的逆定理可證,D、E、F三點共線,即D、E、F三點共線.(2)∵AB=AC=5,BC=6,∴A、E、I三點共線,CE=BE=3,AE=4,連接IF,則△ABE∽△AIF,△ADI∽△CEI,A、F、I、D四點共圓.設⊙I的半徑為r,則:,∴,即,,∴由△AEF∽△DEI得:,∴.∴,因此,由韋達定理可知:分別以、為兩根且二次項系數為6的一個一元二次方程是6x2﹣13x+6=1.點睛:本是一道關于圓的綜合題.正確分析圖形并應用圖形的性質是解題的關鍵.23、(1)補全圖形如圖1所示,見解析,∠BEC=60°;(2)BE=2DE,見解析;(3)∠MAC=90°.【解析】
(1)根據軸對稱作出圖形,先判斷出∠ABD=∠ADB=y,再利用三角形的內角和得出x+y即可得出結論;(2)同(1)的方法判斷出四邊形ABCD是菱形,進而得出∠CBD=30°,進而得出∠BCD=90°,即可得出結論;(3)先作出EF=2BE,進而判斷出EF=CE,再判斷出∠CBE=90°,進而得出∠BCE=30°,得出∠AEC=60°,即可得出結論.【詳解】(1)補全圖形如圖1所示,根據軸對稱得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等邊三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y.在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,證明:∵△ABC是等邊三角形,∴AB=BC=AC,由對稱知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等邊三角形,∴CD=AD,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如圖3,(本身點C,A,D在同一條直線上,為了說明∠CBD=90°,畫圖時,沒畫在一條直線上)延長EB至F使BE=BF,∴EF=2BE,由軸對稱得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,連接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等邊三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【點睛】此題是三角形綜合題,主要考查了等邊三角形的判定和性質,軸對稱的性質,等腰三角形的性質,三角形的內角和定理,作出圖形是解本題的關鍵.24、作a∥b∥c∥d,可得交點P與P′【解析】
(1)根據勾股定理計算即可;(2)利用平行線等分線段定理即可解決問題.【詳解】(I)AC==,故答案為:;(II)如圖直線l1,直線l2即為所求;
理由:∵a∥b∥c∥d,且a與b,b與c,c與d之間的距離相等,∴CP=PP′=P′A,∴S△BCP=S△ABP′=S△ABC.故答案為作a∥b∥c∥d,可得交點P與P′.【點睛】本題考查作圖-應用與設計,勾股定理,平行線等分線段定理等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.25、(1)-3;(2)“A-C”的正確答案為-7x2-2x+2.【解析】
(1)根據整式加減法則可求出二次項系數;(2)表示出多項式,然后根據的結果求出多項式,計算即可求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年農業職業經理人考試答題材料準備竅門試題及答案
- 植物遺傳學基礎知識試題及答案
- 大學生職業生涯規劃匯報與展望
- 春節喜慶祝福
- 美容基礎知識培訓
- 流動色塊創意模板:獨特的筆記應用體驗
- 綜合知識培訓課件
- 生育假期面試題目及答案
- 無線網絡安全知識競賽
- 心理健康:壓力與情緒管理
- 高邊坡施工安全監理實施細則范本
- 花期女人因時定養
- 采購部采購管理制度
- 《文學概論》課程教學大綱
- mt696-1997煤礦用高倍數泡沫滅火裝置通用技術條件
- GB/T 11693-2022船用法蘭焊接座板
- WB/T 1019-2002菱鎂制品用輕燒氧化鎂
- JJG 388-2001純音聽力計
- GB/T 1957-2006光滑極限量規技術條件
- GB/T 18926-2008包裝容器木構件
- GB/T 13350-2008絕熱用玻璃棉及其制品
評論
0/150
提交評論