2023屆廣東省惠州光正實驗中考數學模擬預測試卷含解析及點睛_第1頁
2023屆廣東省惠州光正實驗中考數學模擬預測試卷含解析及點睛_第2頁
2023屆廣東省惠州光正實驗中考數學模擬預測試卷含解析及點睛_第3頁
2023屆廣東省惠州光正實驗中考數學模擬預測試卷含解析及點睛_第4頁
2023屆廣東省惠州光正實驗中考數學模擬預測試卷含解析及點睛_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,直角三角形ABC中,∠C=90°,AC=2,AB=4,分別以AC、BC為直徑作半圓,則圖中陰影部分的面積為()A.2π﹣ B.π+ C.π+2 D.2π﹣22.下列說法正確的是()A.擲一枚均勻的骰子,骰子停止轉動后,5點朝上是必然事件B.明天下雪的概率為,表示明天有半天都在下雪C.甲、乙兩人在相同條件下各射擊10次,他們成績的平均數相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定D.了解一批充電寶的使用壽命,適合用普查的方式3.已知關于x的方程2x+a-9=0的解是x=2,則a的值為A.2 B.3 C.4 D.54.已知拋物線y=ax2+bx+c與x軸交于點A和點B,頂點為P,若△ABP組成的三角形恰為等腰直角三角形,則b2﹣4ac的值為()A.1 B.4 C.8 D.125.若a=,則實數a在數軸上對應的點的大致位置是()A.點E B.點F C.點G D.點H6.下列說法正確的是()A.對角線相等且互相垂直的四邊形是菱形B.對角線互相平分的四邊形是正方形C.對角線互相垂直的四邊形是平行四邊形D.對角線相等且互相平分的四邊形是矩形7.已知:如圖是y=ax2+2x﹣1的圖象,那么ax2+2x﹣1=0的根可能是下列哪幅圖中拋物線與直線的交點橫坐標()A. B.C. D.8.若=1,則符合條件的m有()A.1個 B.2個 C.3個 D.4個9.已知一次函數y=kx+b的大致圖象如圖所示,則關于x的一元二次方程x2﹣2x+kb+1=0的根的情況是()A.有兩個不相等的實數根 B.沒有實數根C.有兩個相等的實數根 D.有一個根是010.某校決定從三名男生和兩名女生中選出兩名同學擔任校藝術節(jié)文藝演出專場的主持人,則選出的恰為一男一女的概率是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式2x2+4x+2=__________.12.函數y=中自變量x的取值范圍是________,若x=4,則函數值y=________.13.如圖,在四邊形ABCD中,AD∥BC,AB=CD且AB與CD不平行,AD=2,∠BCD=60°,對角線CA平分∠BCD,E,F分別是底邊AD,BC的中點,連接EF,點P是EF上的任意一點,連接PA,PB,則PA+PB的最小值為__.14.如圖,在Rt△ABC中,∠ACB=90°,點D、E、F分別是AB、AC、BC的中點,若CD=5,則EF的長為________.15.如圖,將△AOB繞點按逆時針方向旋轉后得到,若,則的度數是_______.16.計算的結果等于_____.三、解答題(共8題,共72分)17.(8分)某校為選拔一名選手參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,經研究,按圖所示的項目和權數對選拔賽參賽選手進行考評(因排版原因統(tǒng)計圖不完整).下表是李明、張華在選拔賽中的得分情況:項目選手服裝普通話主題演講技巧李明85708085張華90757580結合以上信息,回答下列問題:求服裝項目的權數及普通話項目對應扇形的圓心角大??;求李明在選拔賽中四個項目所得分數的眾數和中位數;根據你所學的知識,幫助學校在李明、張華兩人中選擇一人參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,并說明理由.18.(8分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉過程中,半圓弧與直線CD只有一個交點時,設此交點與點C的距離為d,直接寫出d的取值范圍.19.(8分)如圖,兩座建筑物的水平距離為.從點測得點的仰角為53°,從點測得點的俯角為37°,求兩座建筑物的高度(參考數據:20.(8分)“低碳生活,綠色出行”是我們倡導的一種生活方式,有關部門抽樣調查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計圖:(1)填空:樣本中的總人數為;開私家車的人數m=;扇形統(tǒng)計圖中“騎自行車”所在扇形的圓心角為度;(2)補全條形統(tǒng)計圖;(3)該單位共有2000人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行,坐公交車上下班的人數保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數不低于開私家車的人數?21.(8分)如圖,AB是⊙O的直徑,點C為⊙O上一點,經過C作CD⊥AB于點D,CF是⊙O的切線,過點A作AE⊥CF于E,連接AC.(1)求證:AE=AD.(2)若AE=3,CD=4,求AB的長.22.(10分)如圖,已知點A,C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求證:四邊形ABCD是平行四邊形;(2)直接寫出圖中所有相等的線段(AE=CF除外).23.(12分)央視熱播節(jié)目“朗讀者”激發(fā)了學生的閱讀興趣,某校為滿足學生的閱讀需求,欲購進一批學生喜歡的圖書,學校組織學生會成員隨機抽取部分學生進行問卷調查,被調查學生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據調查結果繪制了統(tǒng)計圖(未完成),請根據圖中信息,解答下列問題:此次共調查了名學生;將條形統(tǒng)計圖1補充完整;圖2中“小說類”所在扇形的圓心角為度;若該校共有學生2000人,估計該校喜歡“社科類”書籍的學生人數.24.如圖所示,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,EC的延長線交BD于點P.(1)把△ABC繞點A旋轉到圖1,BD,CE的關系是(選填“相等”或“不相等”);簡要說明理由;(2)若AB=3,AD=5,把△ABC繞點A旋轉,當∠EAC=90°時,在圖2中作出旋轉后的圖形,PD=,簡要說明計算過程;(3)在(2)的條件下寫出旋轉過程中線段PD的最小值為,最大值為.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:觀察圖形可知,陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC,然后根據扇形面積公式和三角形面積公式計算即可.詳解:連接CD.∵∠C=90°,AC=2,AB=4,∴BC==2.∴陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC==.故選:D.點睛:本題考查了勾股定理,圓的面積公式,三角形的面積公式及割補法求圖形的面積,根據圖形判斷出陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC是解答本題的關鍵.2、C【解析】

根據必然事件、不可能事件、隨機事件的概念、方差和普查的概念判斷即可.【詳解】A.擲一枚均勻的骰子,骰子停止轉動后,5點朝上是隨機事件,錯誤;B.“明天下雪的概率為”,表示明天有可能下雪,錯誤;C.甲、乙兩人在相同條件下各射擊10次,他們成績的平均數相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定,正確;D.了解一批充電寶的使用壽命,適合用抽查的方式,錯誤;故選:C【點睛】考查方差,全面調查與抽樣調查,隨機事件,概率的意義,比較基礎,難度不大.3、D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故選D.4、B【解析】

設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),利用二次函數的性質得到P(-,),利用x1、x2為方程ax2+bx+c=0的兩根得到x1+x2=-,x1?x2=,則利用完全平方公式變形得到AB=|x1-x2|=,接著根據等腰直角三角形的性質得到||=?,然后進行化簡可得到b2-1ac的值.【詳解】設拋物線與x軸的兩交點A、B坐標分別為(x1,0),(x2,0),頂點P的坐標為(-,),則x1、x2為方程ax2+bx+c=0的兩根,∴x1+x2=-,x1?x2=,∴AB=|x1-x2|====,∵△ABP組成的三角形恰為等腰直角三角形,

∴||=?,=,∴b2-1ac=1.故選B.【點睛】本題考查了拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數的性質和等腰直角三角形的性質.5、C【解析】

根據被開方數越大算術平方根越大,可得答案.【詳解】解:∵<<,∴3<<4,∵a=,∴3<a<4,故選:C.【點睛】本題考查了實數與數軸,利用被開方數越大算術平方根越大得出3<<4是解題關鍵.6、D【解析】分析:根據菱形,正方形,平行四邊形,矩形的判定定理,進行判定,即可解答.詳解:A、對角線互相平分且垂直的四邊形是菱形,故錯誤;

B、四條邊相等的四邊形是菱形,故錯誤;

C、對角線相互平分的四邊形是平行四邊形,故錯誤;

D、對角線相等且相互平分的四邊形是矩形,正確;

故選D.點睛:本題考查了菱形,正方形,平行四邊形,矩形的判定定理,解決本題的關鍵是熟記四邊形的判定定理.7、C【解析】

由原拋物線與x軸的交點位于y軸的兩端,可排除A、D選項;B、方程ax2+2x﹣1=0有兩個不等實根,且負根的絕對值大于正根的絕對值,B不符合題意;C、拋物線y=ax2與直線y=﹣2x+1的交點,即交點的橫坐標為方程ax2+2x﹣1=0的根,C符合題意.此題得解.【詳解】∵拋物線y=ax2+2x﹣1與x軸的交點位于y軸的兩端,∴A、D選項不符合題意;B、∵方程ax2+2x﹣1=0有兩個不等實根,且負根的絕對值大于正根的絕對值,∴B選項不符合題意;C、圖中交點的橫坐標為方程ax2+2x﹣1=0的根(拋物線y=ax2與直線y=﹣2x+1的交點),∴C選項符合題意.故選:C.【點睛】本題考查了拋物線與x軸的交點以及二次函數的圖象與位置變化,逐一分析四個選項中的圖形是解題的關鍵.8、C【解析】

根據有理數的乘方及解一元二次方程-直接開平方法得出兩個有關m的等式,即可得出.【詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個值故答案選C.【點睛】本題考查的知識點是有理數的乘方及解一元二次方程-直接開平方法,解題的關鍵是熟練的掌握有理數的乘方及解一元二次方程-直接開平方法.9、A【解析】

判斷根的情況,只要看根的判別式△=b2?4ac的值的符號就可以了.【詳解】∵一次函數y=kx+b的圖像經過第一、三、四象限∴k>0,b<0∴△=b2?4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x2﹣2x+kb+1=0有兩個不等的實數根,故選A.【點睛】根的判別式10、B【解析】試題解析:列表如下:∴共有20種等可能的結果,P(一男一女)=.

故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、2(x+1)2?!窘馕觥吭囶}解析:原式=2(x2+2x+1)=2(x+1)2.考點:提公因式法與公式法的綜合運用.12、x≥3y=1【解析】根據二次根式有意義的條件求解即可.即被開方數是非負數,結果是x≥3,y=1.13、2【解析】

將PA+PB轉化為PA+PC的值即可求出最小值.【詳解】解:E,F分別是底邊AD,BC的中點,四邊形ABCD是等腰梯形,B點關于EF的對稱點C點,AC即為PA+PB的最小值,∠BCD=,對角線AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案為:.【點睛】求PA+PB的最小值,PA+PB不能直接求,可考慮轉化PA+PC的值,從而找出其最小值求解.14、5【解析】

已知CD是Rt△ABC斜邊AB的中線,那么AB=2CD;EF是△ABC的中位線,則EF應等于AB的一半.【詳解】∵△ABC是直角三角形,CD是斜邊的中線,∴CD=AB,又∵EF是△ABC的中位線,∴AB=2CD=2×5=10,∴EF=×10=5.故答案為5.【點睛】本題主要考查三角形中位線定理,直角三角形斜邊上的中線,熟悉掌握是關鍵.15、60°【解析】

根據題意可得,根據已知條件計算即可.【詳解】根據題意可得:,故答案為60°【點睛】本題主要考查旋轉角的有關計算,關鍵在于識別那個是旋轉角.16、【解析】分析:直接利用二次根式的性質進行化簡即可.詳解:==.故答案為.點睛:本題主要考查了分母有理化,正確掌握二次根式的性質是解題的關鍵.三、解答題(共8題,共72分)17、(1)服裝項目的權數是10%,普通話項目對應扇形的圓心角是72°;(2)眾數是85,中位數是82.5;(3)選擇李明參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽,理由見解析.【解析】

(1)根據扇形圖用1減去其它項目的權重可求得服裝項目的權重,用360度乘以普通話項目的權重即可求得普通話項目對應扇形的圓心角大?。唬?)根據統(tǒng)計表中的數據可以求得李明在選拔賽中四個項目所得分數的眾數和中位數;(3)根據統(tǒng)計圖和統(tǒng)計表中的數據可以分別計算出李明和張華的成績,然后比較大小,即可解答本題.【詳解】(1)服裝項目的權數是:1﹣20%﹣30%﹣40%=10%,普通話項目對應扇形的圓心角是:360°×20%=72°;(2)明在選拔賽中四個項目所得分數的眾數是85,中位數是:(80+85)÷2=82.5;(3)李明得分為:85×10%+70×20%+80×30%+85×40%=80.5,張華得分為:90×10%+75×20%+75×30%+80×40%=78.5,∵80.5>78.5,∴李明的演講成績好,故選擇李明參加“美麗邵陽,我為家鄉(xiāng)做代言”主題演講比賽.【點睛】本題考查了扇形統(tǒng)計圖、中位數、眾數、加權平均數,明確題意,結合統(tǒng)計表和統(tǒng)計圖找出所求問題需要的條件,運用數形結合的思想進行解答是解題的關鍵.18、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】

(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據相似三角形的性質可求出AM的長度;(2)連接OP、ON,過點O作OG⊥AD于點G,則四邊形DGON為矩形,進而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據等邊三角形的性質可求出OG、DN的長度,進而可得出CN的長度,畫出點B′在直線CD上的圖形,在Rt△AB′D中(點B′在點D左邊),利用勾股定理可求出B′D的長度進而可得出CB′的長度,再結合圖形即可得出:半圓弧與直線CD只有一個交點時d的取值范圍.【詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、ON,過點O作OG⊥AD于點G,∵半圓與直線CD相切,∴ON⊥DN,∴四邊形DGON為矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP為等邊三角形,∴==π.(3)由(2)可知:△AOP為等邊三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.當點B′在直線CD上時,如圖4所示,在Rt△AB′D中(點B′在點D左邊),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′為直徑,∴∠ADB′=90°,∴當點B′在點D右邊時,半圓交直線CD于點D、B′.∴當半圓弧與直線CD只有一個交點時,4-≤d<4或d=4+.【點睛】本題考查了相似三角形的判定與性質、矩形的性質、等邊三角形的性質、勾股定理以及切線的性質,解題的關鍵是:(2)利用相似三角形的性質求出AM的長度;(2)通過解直角三角形找出∠OAG=60°;(3)依照題意畫出圖形,利用數形結合求出d的取值范圍.19、建筑物的高度為.建筑物的高度為.【解析】分析:過點D作DE⊥AB于于E,則DE=BC=60m.在Rt△ABC中,求出AB.在Rt△ADE中求出AE即可解決問題.詳解:過點D作DE⊥AB于于E,則DE=BC=60m,在Rt△ABC中,tan53°==,∴AB=80(m).在Rt△ADE中,tan37°==,∴AE=45(m),∴BE=CD=AB﹣AE=35(m).答:兩座建筑物的高度分別為80m和35m.點睛:本題考查的是解直角三角形的應用﹣仰角俯角問題,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.20、(1)80,20,72;(2)16,補圖見解析;(3)原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數不低于開私家車的人數.【解析】試題分析:(1)用乘公交車的人數除以所占的百分比,計算即可求出總人數,再用總人數乘以開私家車的所占的百分比求出m,用360°乘以騎自行車的所占的百分比計算即可得解:樣本中的總人數為:36÷45%=80人;開私家車的人數m=80×25%=20;扇形統(tǒng)計圖中“騎自行車”的圓心角為360°×(1-10%-25%-45%)=360°×20%=72°.(2)求出騎自行車的人數,然后補全統(tǒng)計圖即可.(3)設原來開私家車的人中有x人改為騎自行車,表示出改后騎自行車的人數和開私家車的人數,列式不等式,求解即可.試題解析:解:(1)80,20,72.(2)騎自行車的人數為:80×20%=16人,補全統(tǒng)計圖如圖所示;(3)設原來開私家車的人中有x人改為騎自行車,由題意得,1580答:原來開私家車的人中至少有50人改為騎自行車,才能使騎自行車的人數不低于開私家車的人數.考點:1.條形統(tǒng)計圖;2.扇形統(tǒng)計圖;3.頻數、頻率和總量的關系;4.一元一次不等式的應用.21、(1)證明見解析(2)【解析】

(1)連接OC,根據垂直定義和切線性質定理證出△CAE≌△CAD(AAS),得AE=AD;(2)連接CB,由(1)得AD=AE=3,根據勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.【詳解】(1)證明:連接OC,如圖所示,∵CD⊥AB,AE⊥CF,∴∠AEC=∠ADC=90°,∵CF是圓O的切線,∴CO⊥CF,即∠ECO=90°,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠EAC=∠CAO,在△CAE和△CAD中,,∴△CAE≌△CAD(AAS),∴AE=AD;(2)解:連接CB,如圖所示,∵△CAE≌△CAD,AE=3,∴AD=AE=3,∴在Rt△ACD中,AD=3,CD=4,根據勾股定理得:AC=5,在Rt△AEC中,cos∠EAC==,∵AB為直徑,∴∠ACB=90°,∴cos∠CAB==,∵∠EAC=∠CAB,∴=,即AB=.【點睛】本題考核知識點:切線性質,銳角三角函數的應用.解題關鍵點:由全等三角形性質得到線段相等,根據直角三角形性質得到相應等式.22、(1)見解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.【解析】整體分析:(1)用ASA證明△ADE≌△CBF,得到AD=BC,根據一組對邊平行且相等的四邊形是平行四邊形證明;(2)根據△ADE≌△CBF,和平行四邊形ABCD的性質及線段的和差關系找相等的線段.解:(1)證明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.在△ADE和△CBF中,,∴△ADE≌△CBF,∴AD=BC,∴四邊形ABCD是平行四邊形.(2)AD=BC,EC=AF,ED=BF,AB=DC.理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF.∵AE=CF,∴EC=AF.∵四邊形ABCD是平行四邊形,∴AB=DC.23、(1)200;(2)見解析;(3)126°;(4)240人.【解析】

(1)根據文史類的人數以及文史類所占的百分比即可求出總人數(2)根據總人數以及生活類的百分比即可求出生活類的人數以及小說類的人數;(3)根據小說類的百分比即可求出圓心角的度數;(4)利用樣本中喜歡社科類書籍的百分比來估計總體中的百分比,從而求出喜歡社科類書籍的學生人數【詳解】(1)∵喜歡文史類的人數為76人,占總人數的38%,∴此次調查的總人數為:76÷38%=200人,故答案為200;(2)∵喜歡生活類書籍的人數占總人數的15%,∴喜歡生活類書籍的人數為:200×15%=30人,∴喜歡小說類書籍的人數為:200﹣24﹣76﹣30=70人,如圖所示:(3)∵喜歡社科類書籍的人數為:24人,∴喜歡社科類書籍的人數占了總人數的百分比為:×100%=12%,∴喜歡小說類書籍的人數占了總分數的百分比為:100%﹣15%﹣38%﹣12%=35%,∴小說類所在圓心角為:360°×35%=126°;(4)由樣本數據可知喜歡“社科類”書籍的學生人數占了總人數的12%,∴該校共有學生2000人,估計該校喜歡“社科類”書籍的學生人數:2000×12%=240人.【點睛】此題考查扇形統(tǒng)計圖和條形統(tǒng)計圖,看懂圖中數據是解題關鍵24、(1)BD,CE的關系是相等;(2)或;(3)1,1【解析】分析:(1)依據△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論