




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.已知:如圖是y=ax2+2x﹣1的圖象,那么ax2+2x﹣1=0的根可能是下列哪幅圖中拋物線與直線的交點橫坐標()A. B.C. D.2.如圖,A、B、C、D是⊙O上的四點,BD為⊙O的直徑,若四邊形ABCO是平行四邊形,則∠ADB的大小為()A.30° B.45° C.60° D.75°3.如圖,已知菱形ABCD的對角線AC.BD的長分別為6cm、8cm,AE⊥BC于點E,則AE的長是()A. B. C. D.4.如圖,為測量一棵與地面垂直的樹OA的高度,在距離樹的底端30米的B處,測得樹頂A的仰角∠ABO為α,則樹OA的高度為()A.米 B.30sinα米 C.30tanα米 D.30cosα米5.如圖,矩形ABCD的對角線AC,BD相交于點O,點M是AB的中點,若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.106.若a+b=3,,則ab等于()A.2 B.1 C.﹣2 D.﹣17.等腰三角形的兩邊長分別為5和11,則它的周長為()A.21 B.21或27 C.27 D.258.如果m的倒數是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣20189.如圖,四個有理數在數軸上的對應點M,P,N,Q,若點M,N表示的有理數互為相反數,則圖中表示絕對值最小的數的點是()A.點M B.點N C.點P D.點Q10.《九章算術》中有這樣一個問題:“今有甲乙二人持錢不知其數,甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?”題意為:今有甲乙二人,不知其錢包里有多少錢,若乙把其一半的錢給甲,則甲的錢數為50;而甲把其的錢給乙,則乙的錢數也能為50,問甲、乙各有多少錢?設甲的錢數為x,乙的錢數為y,則列方程組為()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在正方形中,,點在對角線上運動,連接,過點作,交直線于點(點不與點重合),連接,設,,則和之間的關系是__________(用含的代數式表示).12.圓錐的底面半徑為4cm,高為5cm,則它的表面積為______cm1.13.如圖是矗立在高速公路水平地面上的交通警示牌,經測量得到如下數據:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,則警示牌的高CD為_米.(結果精確到0.1米,參考數據:2≈1.41,3≈1.73)14.一次函數y=kx+b的圖象如圖所示,當y>0時,x的取值范圍是_____.15.拋物線y=2x2+3x+k﹣2經過點(﹣1,0),那么k=_____.16.口袋中裝有4個小球,其中紅球3個,黃球1個,從中隨機摸出兩球,都是紅球的概率為_________.三、解答題(共8題,共72分)17.(8分)計算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.18.(8分)如圖,在△ABC中,∠B=∠C=40°,點D、點E分別從點B、點C同時出發,在線段BC上作等速運動,到達C點、B點后運動停止.求證:△ABE≌△ACD;若AB=BE,求∠DAE的度數;拓展:若△ABD的外心在其內部時,求∠BDA的取值范圍.19.(8分)計算:(-)-2–2()+20.(8分)如圖①,一次函數y=x﹣2的圖象交x軸于點A,交y軸于點B,二次函數y=x2+bx+c的圖象經過A、B兩點,與x軸交于另一點C.(1)求二次函數的關系式及點C的坐標;(2)如圖②,若點P是直線AB上方的拋物線上一點,過點P作PD∥x軸交AB于點D,PE∥y軸交AB于點E,求PD+PE的最大值;(3)如圖③,若點M在拋物線的對稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點M的坐標.21.(8分)如圖,輪船從點A處出發,先航行至位于點A的南偏西15°且點A相距100km的點B處,再航行至位于點A的南偏東75°且與點B相距200km的點C處.(1)求點C與點A的距離(精確到1km);(2)確定點C相對于點A的方向.(參考數據:2≈1.41422.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設點P的橫坐標為m.(1)求拋物線解析式并求出點D的坐標;(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當△CPE是等腰三角形時,請直接寫出m的值.23.(12分)某電器超市銷售每臺進價分別為200元,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:銷售時段銷售數量銷售收入A種型號B種型號第一周3臺5臺1800元第二周4臺10臺3100元(進價、售價均保持不變,利潤=銷售收入-進貨成本)(1)求A,B兩種型號的電風扇的銷售單價.(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,則A種型號的電風扇最多能采購多少臺?(3)在(2)的條件下,超市銷售完這30臺電風扇能否實現利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.24.一天晚上,李明利用燈光下的影子長來測量一路燈D的高度.如圖,當在點A處放置標桿時,李明測得直立的標桿高AM與影子長AE正好相等,接著李明沿AC方向繼續向前走,走到點B處放置同一個標桿,測得直立標桿高BN的影子恰好是線段AB,并測得AB=1.2m,已知標桿直立時的高為1.8m,求路燈的高CD的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
由原拋物線與x軸的交點位于y軸的兩端,可排除A、D選項;B、方程ax2+2x﹣1=0有兩個不等實根,且負根的絕對值大于正根的絕對值,B不符合題意;C、拋物線y=ax2與直線y=﹣2x+1的交點,即交點的橫坐標為方程ax2+2x﹣1=0的根,C符合題意.此題得解.【詳解】∵拋物線y=ax2+2x﹣1與x軸的交點位于y軸的兩端,∴A、D選項不符合題意;B、∵方程ax2+2x﹣1=0有兩個不等實根,且負根的絕對值大于正根的絕對值,∴B選項不符合題意;C、圖中交點的橫坐標為方程ax2+2x﹣1=0的根(拋物線y=ax2與直線y=﹣2x+1的交點),∴C選項符合題意.故選:C.【點睛】本題考查了拋物線與x軸的交點以及二次函數的圖象與位置變化,逐一分析四個選項中的圖形是解題的關鍵.2、A【解析】
解:∵四邊形ABCO是平行四邊形,且OA=OC,∴四邊形ABCO是菱形,∴AB=OA=OB,∴△OAB是等邊三角形,∴∠AOB=60°,∵BD是⊙O的直徑,∴點B、D、O在同一直線上,∴∠ADB=∠AOB=30°故選A.3、D【解析】
根據菱形的性質得出BO、CO的長,在RT△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故選D.點睛:此題考查了菱形的性質,也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.4、C【解析】試題解析:在Rt△ABO中,∵BO=30米,∠ABO為α,∴AO=BOtanα=30tanα(米).故選C.考點:解直角三角形的應用-仰角俯角問題.5、D【解析】
利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【詳解】解:∵矩形ABCD的對角線AC,BD相交于點O,
∴∠BAD=90°,點O是線段BD的中點,
∵點M是AB的中點,
∴OM是△ABD的中位線,
∴AD=2OM=1.
∴在直角△ABD中,由勾股定理知:BD=.
故選:D.【點睛】本題考查了三角形中位線定理和矩形的性質,利用三角形中位線定理求得AD的長度是解題的關鍵.6、B【解析】
∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故選B.考點:完全平方公式;整體代入.7、C【解析】試題分析:分類討論:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系;當腰取11,則底邊為5,根據等腰三角形的性質得到另外一邊為11,然后計算周長.解:當腰取5,則底邊為11,但5+5<11,不符合三角形三邊的關系,所以這種情況不存在;當腰取11,則底邊為5,則三角形的周長=11+11+5=1.故選C.考點:等腰三角形的性質;三角形三邊關系.8、A【解析】
因為兩個數相乘之積為1,則這兩個數互為倒數,如果m的倒數是﹣1,則m=-1,然后再代入m2018計算即可.【詳解】因為m的倒數是﹣1,所以m=-1,所以m2018=(-1)2018=1,故選A.【點睛】本題主要考查倒數的概念和乘方運算,解決本題的關鍵是要熟練掌握倒數的概念和乘方運算法則.9、C【解析】試題分析:∵點M,N表示的有理數互為相反數,∴原點的位置大約在O點,∴絕對值最小的數的點是P點,故選C.考點:有理數大小比較.10、A【解析】
設甲的錢數為x,人數為y,根據“若乙把其一半的錢給甲,則甲的錢數為50;而甲把其的錢給乙,則乙的錢數也能為50”,即可得出關于x,y的二元一次方程組,此題得解.【詳解】解:設甲的錢數為x,乙的錢數為y,依題意,得:.故選A.【點睛】本題考查了由實際問題抽象出二元一次方程組,找準等量關系,正確列出二元一次方程組是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、或【解析】
當F在邊AB上時,如圖1作輔助線,先證明≌,得,,根據正切的定義表示即可;當F在BA的延長線上時,如圖2,同理可得:≌,表示AF的長,同理可得結論.【詳解】解:分兩種情況:
當F在邊AB上時,如圖1,
過E作,交AB于G,交DC于H,
四邊形ABCD是正方形,
,,,
,,
,
,
≌,
,
,
,
中,,
即;
當F在BA的延長線上時,如圖2,
同理可得:≌,
,
,
,
中,.【點睛】本題考查了正方形的性質、三角形全等的性質和判定、三角函數等知識,熟練掌握正方形中輔助線的作法是關鍵,并注意F在直線AB上,分類討論.12、【解析】
利用勾股定理求得圓錐的母線長,則圓錐表面積=底面積+側面積=π×底面半徑的平方+底面周長×母線長÷1.【詳解】底面半徑為4cm,則底面周長=8πcm,底面面積=16πcm1;由勾股定理得,母線長=,圓錐的側面面積,∴它的表面積=(16π+4)cm1=cm1,故答案為:.【點睛】本題考查了有關扇形和圓錐的相關計算.解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應關系:(1)圓錐的母線長等于側面展開圖的扇形半徑;(1)圓錐的底面周長等于側面展開圖的扇形弧長.正確對這兩個關系的記憶是解題的關鍵.13、2.9【解析】試題分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考點:解直角三角形.14、【解析】試題解析:根據圖象和數據可知,當y>0即圖象在x軸的上方,x>1.
故答案為x>1.15、3.【解析】試題解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案為3.16、【解析】
先畫出樹狀圖,用隨意摸出兩個球是紅球的結果個數除以所有可能的結果個數即可.【詳解】∵從中隨意摸出兩個球的所有可能的結果個數是12,隨意摸出兩個球是紅球的結果個數是6,∴從中隨意摸出兩個球的概率=;故答案為:.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.三、解答題(共8題,共72分)17、【解析】分析:按照實數的運算順序進行運算即可.詳解:原式點睛:本題考查實數的運算,主要考查零次冪,負整數指數冪,特殊角的三角函數值以及二次根式,熟練掌握各個知識點是解題的關鍵.18、(1)證明見解析;(2);拓展:【解析】
(1)由題意得BD=CE,得出BE=CD,證出AB=AC,由SAS證明△ABE≌△ACD即可;(2)由等腰三角形的性質和三角形內角和定理求出∠BEA=∠EAB=70°,證出AC=CD,由等腰三角形的性質得出∠ADC=∠DAC=70°,即可得出∠DAE的度數;拓展:對△ABD的外心位置進行推理,即可得出結論.【詳解】(1)證明:∵點D、點E分別從點B、點C同時出發,在線段BC上作等速運動,∴BD=CE,∴BC-BD=BC-CE,即BE=CD,∵∠B=∠C=40°,∴AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS);(2)解:∵∠B=∠C=40°,AB=BE,∴∠BEA=∠EAB=(180°-40°)=70°,∵BE=CD,AB=AC,∴AC=CD,∴∠ADC=∠DAC=(180°-40°)=70°,∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;拓展:解:若△ABD的外心在其內部時,則△ABD是銳角三角形.∴∠BAD=140°-∠BDA<90°.∴∠BDA>50°,又∵∠BDA<90°,∴50°<∠BDA<90°.【點睛】本題考查了全等三角形的判定與性質、等腰三角形的性質、三角形內角和定理、三角形的外心等知識;熟練掌握等腰三角形的性質是解題的關鍵.19、0【解析】
本題涉及負指數冪、二次根式化簡和絕對值3個考點.在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果.【詳解】原式.【點睛】本題主要考查負指數冪、二次根式化簡和絕對值,熟悉掌握是關鍵.20、(1)二次函數的關系式為y=;C(1,0);(2)當m=2時,PD+PE有最大值3;(3)點M的坐標為(,)或(,).【解析】
(1)先求出A、B的坐標,然后把A、B的坐標分別代入二次函數的解析式,解方程組即可得到結論;(2)先證明△PDE∽△OAB,得到PD=2PE.設P(m,),則E(m,),PD+PE=3PE,然后配方即可得到結論.(3)分兩種情況討論:①當點M在在直線AB上方時,則點M在△ABC的外接圓上,如圖1.求出圓心O1的坐標和半徑,利用MO1=半徑即可得到結論.②當點M在在直線AB下方時,作O1關于AB的對稱點O2,如圖2.求出點O2的坐標,算出DM的長,即可得到結論.【詳解】解:(1)令y==0,得:x=4,∴A(4,0).令x=0,得:y=-2,∴B(0,-2).∵二次函數y=的圖像經過A、B兩點,∴,解得:,∴二次函數的關系式為y=.令y==0,解得:x=1或x=4,∴C(1,0).(2)∵PD∥x軸,PE∥y軸,∴∠PDE=∠OAB,∠PED=∠OBA,∴△PDE∽△OAB.∴===2,∴PD=2PE.設P(m,),則E(m,).∴PD+PE=3PE=3×[()-()]==.∵0<m<4,∴當m=2時,PD+PE有最大值3.(3)①當點M在在直線AB上方時,則點M在△ABC的外接圓上,如圖1.∵△ABC的外接圓O1的圓心在對稱軸上,設圓心O1的坐標為(,-t).∴=,解得:t=2,∴圓心O1的坐標為(,-2),∴半徑為.設M(,y).∵MO1=,∴,解得:y=,∴點M的坐標為().②當點M在在直線AB下方時,作O1關于AB的對稱點O2,如圖2.∵AO1=O1B=,∴∠O1AB=∠O1BA.∵O1B∥x軸,∴∠O1BA=∠OAB,∴∠O1AB=∠OAB,O2在x軸上,∴點O2的坐標為(,0),∴O2D=1,∴DM==,∴點M的坐標為(,).綜上所述:點M的坐標為(,)或(,).點睛:本題是二次函數的綜合題.考查了求二次函數的解析式,求二次函數的最值,圓的有關性質.難度比較大,解答第(3)問的關鍵是求出△ABC外接圓的圓心坐標.21、(1)173;(2)點C位于點A的南偏東75°方向.【解析】試題分析:(1)作輔助線,過點A作AD⊥BC于點D,構造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定△ABC為直角三角形;然后根據方向角的定義,即可確定點C相對于點A的方向.試題解析:解:(1)如答圖,過點A作AD⊥BC于點D.由圖得,∠ABC=75°﹣10°=60°.在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=503.∴CD=BC﹣BD=200﹣50=1.在Rt△ACD中,由勾股定理得:AC=AD答:點C與點A的距離約為173km.(2)在△ABC中,∵AB2+AC2=1002+(1003)2=40000,BC2=2002=40000,∴AB2+AC2=BC2.∴∠BAC=90°.∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:點C位于點A的南偏東75°方向.考點:1.解直角三角形的應用(方向角問題);2.銳角三角函數定義;3.特殊角的三角函數值;4.勾股定理和逆定理.22、(1)y=﹣x2+2x+3,D點坐標為();(2)當m=時,△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】
(1)利用待定系數法求拋物線解析式和直線CD的解析式,然后解方程組得D點坐標;
(2)設P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數的性質解決問題;
(3)討論:當PC=PE時,m2+(-m2+2m+3-3)2=(-m2+m)2;當CP=CE時,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當EC=EP時,m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線CD的解析式為y=﹣x+3,解方程組,解得或,∴D點坐標為(,);(2)存在.設P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當m=時,△CDP的面積存在最大值,最大值為;(3)當PC=PE時,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當CP=CE時,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當EC=EP時,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理年度述職報告
- 食品經營租賃協議書
- 茶園買賣合同協議書
- 被打輕傷和解協議書
- 輔助檢查委托協議書
- 車輛維修包干協議書
- 集體產權轉讓協議書
- 創維業務員合同協議書
- 駐廠人員保密協議書
- 金融產品購買協議書
- 委托尋找房源協議書
- 法洛四聯癥的護理課件
- 2025年佛山市三水海江建設投資有限公司招聘筆試參考題庫附帶答案詳解
- 2025屆高考語文寫作押題作文10篇
- 跨國醫療體檢代理合作協議
- 2024年廣東省乳源瑤族自治縣事業單位公開招聘高層次緊缺人才24名筆試題帶答案
- 中國成人呼吸系統疾病家庭氧療指南(2024年)解讀
- 大同市勞動和社會保障局勞動合同書模板
- 人力資源數字化平臺的建設與維護
- 雷軍創業經歷講解
- DB11- 206-2023 儲油庫油氣排放控制和限值
評論
0/150
提交評論