2023屆安徽省合肥市名校中考數學四模試卷含解析及點睛_第1頁
2023屆安徽省合肥市名校中考數學四模試卷含解析及點睛_第2頁
2023屆安徽省合肥市名校中考數學四模試卷含解析及點睛_第3頁
2023屆安徽省合肥市名校中考數學四模試卷含解析及點睛_第4頁
2023屆安徽省合肥市名校中考數學四模試卷含解析及點睛_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.第四屆濟南國際旅游節期間,全市共接待游客686000人次.將686000用科學記數法表示為()A.686×104B.68.6×105C.6.86×106D.6.86×1052.計算的結果為()A.1 B.x C. D.3.下列二次根式中,為最簡二次根式的是()A. B. C. D.4.在,,則的值為()A. B. C. D.5.有m輛客車及n個人,若每輛客車乘40人,則還有10人不能上車,若每輛客車乘43人,則只有1人不能上車,有下列四個等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正確的是()A.①② B.②④ C.②③ D.③④6.如果代數式有意義,則實數x的取值范圍是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥37.剪紙是我國傳統的民間藝術,下列剪紙作品中既不是軸對稱圖形,也不是中心對稱圖形的是()A. B. C. D.8.將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經過點,將繞點順時針方向旋轉(),交于點,交于點,則的值為()A. B. C. D.9.平面上直線a、c與b相交(數據如圖),當直線c繞點O旋轉某一角度時與a平行,則旋轉的最小度數是()A.60° B.50° C.40° D.30°10.下列運算不正確的是A.a5+C.2a211.如圖所示,在矩形ABCD中,AB=6,BC=8,對角線AC、BD相交于點O,過點O作OE垂直AC交AD于點E,則DE的長是()A.5 B. C. D.12.一次函數y1=kx+1﹣2k(k≠0)的圖象記作G1,一次函數y2=2x+3(﹣1<x<2)的圖象記作G2,對于這兩個圖象,有以下幾種說法:①當G1與G2有公共點時,y1隨x增大而減小;②當G1與G2沒有公共點時,y1隨x增大而增大;③當k=2時,G1與G2平行,且平行線之間的距離為65下列選項中,描述準確的是()A.①②正確,③錯誤 B.①③正確,②錯誤C.②③正確,①錯誤 D.①②③都正確二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點A在雙曲線y=的第一象限的那一支上,AB垂直于y軸與點B,點C在x軸正半軸上,且OC=2AB,點E在線段AC上,且AE=3EC,點D為OB的中點,若△ADE的面積為3,則k的值為_____.14.8的算術平方根是_____.15.如圖,若雙曲線()與邊長為3的等邊△AOB(O為坐標原點)的邊OA、AB分別交于C、D兩點,且OC=2BD,則k的值為_____.16.如圖,在△ABC中,AB=AC=2,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為________.17.已知x+y=8,xy=2,則x2y+xy2=_____.18.若a是方程的根,則=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)甲、乙兩組工人同時開始加工某種零件,乙組在工作中有一次停產更換設備,更換設備后,乙組的工作效率是原來的2倍.兩組各自加工零件的數量y(件)與時間x(時)之間的函數圖象如下圖所示.(1)求甲組加工零件的數量y與時間x之間的函數關系式.(2)求乙組加工零件總量a的值.20.(6分)如圖,已知A(3,0),B(0,﹣1),連接AB,過B點作AB的垂線段BC,使BA=BC,連接AC.如圖1,求C點坐標;如圖2,若P點從A點出發沿x軸向左平移,連接BP,作等腰直角△BPQ,連接CQ,當點P在線段OA上,求證:PA=CQ;在(2)的條件下若C、P,Q三點共線,求此時∠APB的度數及P點坐標.21.(6分)如圖,水渠邊有一棵大木瓜樹,樹干DO(不計粗細)上有兩個木瓜A、B(不計大?。?,樹干垂直于地面,量得AB=2米,在水渠的對面與O處于同一水平面的C處測得木瓜A的仰角為45°、木瓜B的仰角為30°.求C處到樹干DO的距離CO.(結果精確到1米)(參考數據:,)22.(8分)關于x的一元二次方程x2+2x+2m=0有兩個不相等的實數根.(1)求m的取值范圍;(2)若x1,x2是一元二次方程x2+2x+2m=0的兩個根,且x12+x22﹣x1x2=8,求m的值.23.(8分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面兩幅尚不完整的統計圖,請根據統計圖中所提供的信息解答下列問題:接受問卷調查的學生共有人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為度;請補全條形統計圖;若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數.24.(10分)如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點M是拋物線AC段上的一個動點,當圖中陰影部分的面積最小值時,求點M的坐標;(3)在圖乙中,點C和點C1關于拋物線的對稱軸對稱,點P在拋物線上,且∠PAB=∠CAC1,求點P的橫坐標.25.(10分)如圖1,圖2分別是某款籃球架的實物圖與示意圖,已知底座BC=1.5米,底座BC與支架AC所成的角∠ACB=60°,支架AF的長為2.50米,籃板頂端F點到籃筐D的距離FD=1.3米,籃板底部支架HE與支架AF所成的角∠FHE=45°,求籃筐D到地面的距離.(精確到0.01米參考數據:≈1.73,≈1.41)26.(12分)如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點,∠EAD=45°,將△ADC繞點A順時針旋轉90°,得到△AFB,連接EF.求證:EF=ED;若AB=2,CD=1,求FE的長.27.(12分)已知:如圖,在平面直角坐標系xOy中,直線AB分別與x軸、y軸交于點B,A,與反比例函數的圖象分別交于點C,D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求該反比例函數的解析式;(1)求三角形CDE的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】根據科學記數法的表示形式(a×10n,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數)可得:686000=6.86×105,

故選:D.2、A【解析】

根據同分母分式的加減運算法則計算可得.【詳解】原式===1,故選:A.【點睛】本題主要考查分式的加減法,解題的關鍵是掌握同分母分式的加減運算法則.3、B【解析】

最簡二次根式必須滿足以下兩個條件:1.被開方數的因數是(整數),因式是(整式)(分母中不含根號)2.被開方數中不含能開提盡方的(因數)或(因式).【詳解】A.=3,不是最簡二次根式;B.,最簡二次根式;C.=,不是最簡二次根式;D.=,不是最簡二次根式.故選:B【點睛】本題考核知識點:最簡二次根式.解題關鍵點:理解最簡二次根式條件.4、A【解析】

本題可以利用銳角三角函數的定義求解即可.【詳解】解:tanA=,

∵AC=2BC,

∴tanA=.

故選:A.【點睛】本題考查了正切函數的概念,掌握直角三角形中角的對邊與鄰邊的比是關鍵.5、D【解析】試題分析:首先要理解清楚題意,知道總的客車數量及總的人數不變,然后采用排除法進行分析從而得到正確答案.解:根據總人數列方程,應是40m+10=43m+1,①錯誤,④正確;根據客車數列方程,應該為,②錯誤,③正確;所以正確的是③④.故選D.考點:由實際問題抽象出一元一次方程.6、C【解析】

根據二次根式有意義和分式有意義的條件列出不等式,解不等式即可.【詳解】由題意得,x+3≥0,x≠0,解得x≥?3且x≠0,故選C.【點睛】本題考查分式有意義條件,二次根式有意義的條件,熟練掌握相關知識是解題的關鍵.7、C【解析】【分析】根據軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;D、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤,故選C.【點睛】本題主要考查軸對稱圖形和中心對稱圖形,在平面內,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內,如果把一個圖形繞某個點旋轉180°后,能與原圖形重合,那么就說這個圖形是中心對稱圖形.8、C【解析】

先根據直角三角形斜邊上的中線性質得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據旋轉的性質得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【詳解】∵點D為斜邊AB的中點,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點D順時針方向旋轉α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了相似三角形的判定與性質.9、C【解析】

先根據平角的定義求出∠1的度數,再由平行線的性質即可得出結論.【詳解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故選:C.【點睛】本題考查的是平行線的性質,用到的知識點為:兩直線平行,同旁內角互補.10、B【解析】(-2a11、C【解析】

先利用勾股定理求出AC的長,然后證明△AEO∽△ACD,根據相似三角形對應邊成比例列式求解即可.【詳解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=,∴DE=8﹣=,故選:C.【點睛】本題考查了矩形的性質,勾股定理,相似三角形對應邊成比例的性質,根據相似三角形對應邊成比例列出比例式是解題的關鍵.12、D【解析】

畫圖,找出G2的臨界點,以及G1的臨界直線,分析出G1過定點,根據k的正負與函數增減變化的關系,結合函數圖象逐個選項分析即可解答.【詳解】解:一次函數y2=2x+3(﹣1<x<2)的函數值隨x的增大而增大,如圖所示,N(﹣1,2),Q(2,7)為G2的兩個臨界點,易知一次函數y1=kx+1﹣2k(k≠0)的圖象過定點M(2,1),直線MN與直線MQ為G1與G2有公共點的兩條臨界直線,從而當G1與G2有公共點時,y1隨x增大而減??;故①正確;當G1與G2沒有公共點時,分三種情況:一是直線MN,但此時k=0,不符合要求;二是直線MQ,但此時k不存在,與一次函數定義不符,故MQ不符合題意;三是當k>0時,此時y1隨x增大而增大,符合題意,故②正確;當k=2時,G1與G2平行正確,過點M作MP⊥NQ,則MN=3,由y2=2x+3,且MN∥x軸,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=35∴PM=65故③正確.綜上,故選:D.【點睛】本題是一次函數中兩條直線相交或平行的綜合問題,需要數形結合,結合一次函數的性質逐條分析解答,難度較大.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】

由AE=3EC,△ADE的面積為3,可知△ADC的面積為4,再根據點D為OB的中點,得到△ADC的面積為梯形BOCA面積的一半,即梯形BOCA的面積為8,設A(x,),從而表示出梯形BOCA的面積關于k的等式,求解即可.【詳解】如圖,連接DC,∵AE=3EC,△ADE的面積為3,∴△CDE的面積為1.∴△ADC的面積為4.∵點A在雙曲線y=的第一象限的那一支上,∴設A點坐標為(x,).∵OC=2AB,∴OC=2x.∵點D為OB的中點,∴△ADC的面積為梯形BOCA面積的一半,∴梯形BOCA的面積為8.∴梯形BOCA的面積=,解得.【點睛】反比例函數綜合題,曲線上點的坐標與方程的關系,相似三角形的判定和性質,同底三角形面積的計算,梯形中位線的性質.14、2.【解析】試題分析:本題主要考查的是算術平方根的定義,掌握算術平方根的定義是解題的關鍵.依據算術平方根的定義回答即可.由算術平方根的定義可知:8的算術平方根是,∵=2,∴8的算術平方根是2.故答案為2.考點:算術平方根.15、.【解析】

過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,設OC=2x,則BD=x,在Rt△OCE中,∠COE=60°,則OE=x,CE=,則點C坐標為(x,),在Rt△BDF中,BD=x,∠DBF=60°,則BF=,DF=,則點D的坐標為(,),將點C的坐標代入反比例函數解析式可得:,將點D的坐標代入反比例函數解析式可得:,則,解得:,(舍去),故=.故答案為.考點:1.反比例函數圖象上點的坐標特征;2.等邊三角形的性質.16、1-1.【解析】

將△ABD繞點A逆時針旋轉120°得到△ACF,取CF的中點G,連接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根據旋轉的性質可得出∠ECG=60°,結合CF=BD=2CE可得出△CEG為等邊三角形,進而得出△CEF為直角三角形,通過解直角三角形求出BC的長度以及證明全等找出DE=FE,設EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此題得解.【詳解】將△ABD繞點A逆時針旋轉120°得到△ACF,取CF的中點G,連接EF、EG,如圖所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG為等邊三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF為直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.設EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案為:1-1.【點睛】本題考查了全等三角形的判定與性質、勾股定理以及旋轉的性質,通過勾股定理找出方程是解題的關鍵.17、1【解析】

將所求式子提取xy分解因式后,把x+y與xy的值代入計算,即可得到所求式子的值.【詳解】∵x+y=8,xy=2,

∴x2y+xy2=xy(x+y)=2×8=1.

故答案為:1.【點睛】本題考查的知識點是因式分解的應用,解題關鍵是將所求式子分解因式.18、1【解析】

利用一元二次方程解的定義得到3a2-a=2,再把變形為,然后利用整體代入的方法計算.【詳解】∵a是方程的根,

∴3a2-a-2=0,

∴3a2-a=2,

∴==5-2×2=1.

故答案為:1.【點睛】此題考查一元二次方程的解,解題關鍵在于掌握能使一元二次方程左右兩邊相等的未知數的值是一元二次方程的解.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=60x;(2)300【解析】

(1)由題圖可知,甲組的y是x的正比例函數.設甲組加工的零件數量y與時間x的函數關系式為y=kx.根據題意,得6k=360,解得k=60.所以,甲組加工的零件數量y與時間x之間的關系式為y=60x.(2)當x=2時,y=100.因為更換設備后,乙組工作效率是原來的2倍.所以,解得a=300.20、(1)C(1,-4).(2)證明見解析;(3)∠APB=135°,P(1,0).【解析】

(1)作CH⊥y軸于H,證明△ABO≌△BCH,根據全等三角形的性質得到BH=OA=3,CH=OB=1,求出OH,得到C點坐標;(2)證明△PBA≌△QBC,根據全等三角形的性質得到PA=CQ;(3)根據C、P,Q三點共線,得到∠BQC=135°,根據全等三角形的性質得到∠BPA=∠BQC=135°,根據等腰三角形的性質求出OP,得到P點坐標.【詳解】(1)作CH⊥y軸于H,則∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C點坐標為(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,當C、P,Q三點共線時,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P點坐標為(1,0).【點睛】本題考查的是全等三角形的判定和性質、三角形的外角的性質,掌握全等三角形的判定定理和性質定理是解題的關鍵.21、解:設OC=x,在Rt△AOC中,∵∠ACO=45°,∴OA=OC=x.在Rt△BOC中,∵∠BCO=30°,∴.∵AB=OA﹣OB=,解得.∴OC=5米.答:C處到樹干DO的距離CO為5米.【解析】解直角三角形的應用(仰角俯角問題),銳角三角函數定義,特殊角的三角函數值.【分析】設OC=x,在Rt△AOC中,由于∠ACO=45°,故OA=x,在Rt△BOC中,由于∠BCO=30°,故,再根據AB=OA-OB=2即可得出結論.22、(1);(2)m=﹣.【解析】

(1)根據已知和根的判別式得出△=22﹣4×1×2m=4﹣8m>0,求出不等式的解集即可;(2)根據根與系數的關系得出x1+x2=﹣2,x1?x2=2m,把x1+xx12+x22﹣x1x2=8變形為(x1+x2)2﹣3x1x2=8,代入求出即可.【詳解】(1)∵關于x的一元二次方程x2+2x+2m=0有兩個不相等的實數根,∴△=22﹣4×1×2m=4﹣8m>0,解得:即m的取值范圍是(2)∵x1,x2是一元二次方程x2+2x+2m=0的兩個根,∴x1+x2=﹣2,x1?x2=2m,∵x12+x22﹣x1x2=8,∴(x1+x2)2﹣3x1x2=8,∴(﹣2)2﹣3×2m=8,解得:【點睛】本題考查了根的判別式和根與系數的關系,能熟記根的判別式的內容和根與系數的關系的內容是解此題的關鍵.23、(1)60,90;(2)見解析;(3)300人【解析】

(1)由了解很少的有30人,占50%,可求得接受問卷調查的學生數,繼而求得扇形統計圖中“基本了解”部分所對應扇形的圓心角;(2)由(1)可求得了解的人數,繼而補全條形統計圖;(3)利用樣本估計總體的方法,即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調查的學生共有:30÷50%=60(人);∴扇形統計圖中“基本了解”部分所對應扇形的圓心角為:×360°=90°;故答案為60,90;(2)60﹣15﹣30﹣10=5;補全條形統計圖得:(3)根據題意得:900×=300(人),則估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數為300人.【點睛】本題考查了條形統計圖與扇形統計圖,解題的關鍵是熟練的掌握條形統計圖與扇形統計圖的相關知識點.24、(1)y=12x2-x-4(2)點M的坐標為(2,-4)(3)-83【解析】【分析】(1)設交點式y=a(x+2)(x-4),然后把C點坐標代入求出a即可得到拋物線解析式;

(2)連接OM,設點M的坐標為m,12m2-m-4.由題意知,當四邊形OAMC面積最大時,陰影部分的面積最小.S四邊形OAMC=S△OAM(3)拋物線的對稱軸為直線x=1,點C與點C1關于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.先求AC=42,CD=C1D=2,AD=42-2=32;設點Pn,12n2-n-4,過P作PQ垂直于x軸,垂足為Q.證△PAQ∽△C1AD,得PQC1【詳解】(1)拋物線的解析式為y=12(x-4)(x+2)=12x(2)連接OM,設點M的坐標為m,1由題意知,當四邊形OAMC面積最大時,陰影部分的面積最?。甋四邊形OAMC=S△OAM+S△OCM=12×4m+12×4=-m2+4m+8=-(m-2)2+12.當m=2時,四邊形OAMC面積最大,此時陰影部分面積最小,所以點M的坐標為(2,-4).(3)∵拋物線的對稱軸為直線x=1,點C與點C1關于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=42,CD=C1D=2,AD=42-2=32,設點Pn,1∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴PQC即12n2即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-83,或n=-4∴點P的橫坐標為-83或-4【點睛】本題考核知識點:二次函數綜合運用.解題關鍵點:熟記二次函數的性質,數形結合,由所求分析出必知條件.25、3.05米【解析】

延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到正確結論.【詳解】解:如圖:延長FE交

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論