




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設且,則下列不等式成立的是()A. B. C. D.2.集合,則()A. B. C. D.3.若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或4.設集合,則()A. B.C. D.5.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.6.定義在上的函數滿足,則()A.-1 B.0 C.1 D.27.設點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.8.我國宋代數學家秦九韶(1202-1261)在《數書九章》(1247)一書中提出“三斜求積術”,即:以少廣求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實;一為從隅,開平方得積.其實質是根據三角形的三邊長,,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或9.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設,則的取值范圍是()A. B. C. D.10.已知拋物線,F為拋物線的焦點且MN為過焦點的弦,若,,則的面積為()A. B. C. D.11.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點,若,則λ+μ的值為()A. B. C. D.12.在等差數列中,若為前項和,,則的值是()A.156 B.124 C.136 D.180二、填空題:本題共4小題,每小題5分,共20分。13.設為定義在上的偶函數,當時,(為常數),若,則實數的值為______.14.已知數列的前項和為,且滿足,則______15.已知,,,的夾角為30°,,則_________.16.設函數在區(qū)間上的值域是,則的取值范圍是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(),且只有一個零點.(1)求實數a的值;(2)若,且,證明:.18.(12分)已知函數,函數().(1)討論的單調性;(2)證明:當時,.(3)證明:當時,.19.(12分)已知函數,.(1)求證:在區(qū)間上有且僅有一個零點,且;(2)若當時,不等式恒成立,求證:.20.(12分)已知為坐標原點,點,,,動點滿足,點為線段的中點,拋物線:上點的縱坐標為,.(1)求動點的軌跡曲線的標準方程及拋物線的標準方程;(2)若拋物線的準線上一點滿足,試判斷是否為定值,若是,求這個定值;若不是,請說明理由.21.(12分)在平面直角坐標系中,曲線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.(Ⅰ)求直線的直角坐標方程與曲線的普通方程;(Ⅱ)已知點設直線與曲線相交于兩點,求的值.22.(10分)在平面直角坐標系中,直線的參數方程為(為參數,).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)若點在直線上,求直線的極坐標方程;(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】項,由得到,則,故項正確;項,當時,該不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤.綜上所述,故選.2.D【解析】
利用交集的定義直接計算即可.【詳解】,故,故選:D.【點睛】本題考查集合的交運算,注意常見集合的符號表示,本題屬于基礎題.3.D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學生對該知識的掌握水平和計算推理能力.(2)點到直線的距離.4.B【解析】
直接進行集合的并集、交集的運算即可.【詳解】解:;∴.故選:B.【點睛】本題主要考查集合描述法、列舉法的定義,以及交集、并集的運算,是基礎題.5.D【解析】
過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.6.C【解析】
推導出,由此能求出的值.【詳解】∵定義在上的函數滿足,∴,故選C.【點睛】本題主要考查函數值的求法,解題時要認真審題,注意函數性質的合理運用,屬于中檔題.7.B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質及橢圓的定義.求解與橢圓性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯(lián)系.8.C【解析】
將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關系求解.【詳解】已知,,,代入,得,即,解得,當時,由余弦弦定理得:,.當時,由余弦弦定理得:,.故選:C【點睛】本題主要考查余弦定理和平方關系,還考查了對數學史的理解能力,屬于基礎題.9.C【解析】
以為坐標原點,以分別為x軸,y軸建立直角坐標系,利用向量的坐標運算計算即可解決.【詳解】以為坐標原點建立如圖所示的直角坐標系,不妨設正方形的邊長為1,則,,設,則,所以,且,故.故選:C.【點睛】本題考查利用向量的坐標運算求變量的取值范圍,考查學生的基本計算能力,本題的關鍵是建立適當的直角坐標系,是一道基礎題.10.A【解析】
根據可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設點點,則由拋物線定義知,,則.由得,則.又MN為過焦點的弦,所以,則,所以.故選:A【點睛】本題考查拋物線的方程應用,同時也考查了焦半徑公式等.屬于中檔題.11.B【解析】
建立平面直角坐標系,用坐標表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標系,則D(0,0).不妨設AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點睛】本題主要考查了由平面向量線性運算的結果求參數,屬于中檔題.12.A【解析】
因為,可得,根據等差數列前項和,即可求得答案.【詳解】,,.故選:A.【點睛】本題主要考查了求等差數列前項和,解題關鍵是掌握等差中項定義和等差數列前項和公式,考查了分析能力和計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
根據為定義在上的偶函數,得,再根據當時,(為常數)求解.【詳解】因為為定義在上的偶函數,所以,又因為當時,,所以,所以實數的值為1.故答案為:1【點睛】本題主要考查函數奇偶性的應用,還考查了運算求解的能力,屬于基礎題.14.【解析】
對題目所給等式進行賦值,由此求得的表達式,判斷出數列是等比數列,由此求得的值.【詳解】解:,可得時,,時,,又,兩式相減可得,即,上式對也成立,可得數列是首項為1,公比為的等比數列,可得.【點睛】本小題主要考查已知求,考查等比數列前項和公式,屬于中檔題.15.1【解析】
由求出,代入,進行數量積的運算即得.【詳解】,存在實數,使得.不共線,.,,,的夾角為30°,.故答案為:1.【點睛】本題考查向量共線定理和平面向量數量積的運算,屬于基礎題.16..【解析】
配方求出頂點,作出圖像,求出對應的自變量,結合函數圖像,即可求解.【詳解】,頂點為因為函數的值域是,令,可得或.又因為函數圖象的對稱軸為,且,所以的取值范圍為.故答案為:.【點睛】本題考查函數值域,考查數形結合思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】
(1)求導可得在上,在上,所以函數在時,取最小值,由函數只有一個零點,觀察可知則有,即可求得結果.(2)由(1)可知為最小值,則構造函數(),求導借助基本不等式可判斷為減函數,即可得,即則有,由已知可得,由,可知,因為時,為增函數,即可得證得結論.【詳解】(1)().因為,所以,令得,,且,,在上;在上;所以函數在時,取最小值,當最小值為0時,函數只有一個零點,易得,所以,解得.(2)由(1)得,函數,設(),則,設(),則,,所以為減函數,所以,即,所以,即,又,所以,又當時,為增函數,所以,即.【點睛】本題考查借助導數研究函數的單調性及最值,考查學生分析問題的能力,及邏輯推理能力,難度困難.18.(1)答案不唯一,具體見解析(2)證明見解析(3)證明見解析【解析】
(1)求出的定義域,導函數,對參數、分類討論得到答案.(2)設函數,求導說明函數的單調性,求出函數的最大值,即可得證.(3)由(1)可知,可得,即又即可得證.【詳解】(1)解:的定義域為,,當,時,,則在上單調遞增;當,時,令,得,令,得,則在上單調遞減,在上單調遞增;當,時,,則在上單調遞減;當,時,令,得,令,得,則在上單調遞增,在上單調遞減;(2)證明:設函數,則.因為,所以,,則,從而在上單調遞減,所以,即.(3)證明:當時,.由(1)知,,所以,即.當時,,,則,即,又,所以,即.【點睛】本題考查利用導數研究含參函數的單調性,利用導數證明不等式,屬于難題.19.(1)詳見解析;(2)詳見解析.【解析】
(1)利用求導數,判斷在區(qū)間上的單調性,然后再證異號,即可證明結論;(2)當時,不等式恒成立,分離參數只需時,恒成立,設(),需,根據(1)中的結論先求出,再構造函數結合導數法,證明即可.【詳解】(1),令,則,所以在區(qū)間上是增函數,則,所以在區(qū)間上是增函數.又因為,,所以在區(qū)間上有且僅有一個零點,且.(2)由題意,在區(qū)間上恒成立,即在區(qū)間上恒成立,當時,;當時,恒成立,設(),所以.由(1)可知,,使,所以,當時,,當時,,由此在區(qū)間上單調遞減,在區(qū)間上單調遞增,所以.又因為,所以,從而,所以.令,,則,所以在區(qū)間上是增函數,所以,故.【點睛】本題考查導數的綜合應用,涉及到函數的單調性、函數的零點、極值最值、不等式的證明,分離參數是解題的關鍵,意在考查邏輯推理、數學計算能力,屬于較難題.20.(1)曲線的標準方程為.拋物線的標準方程為.(2)見解析【解析】
(1)由題知|PF1|+|PF2|2|F1F2|,判斷動點P的軌跡W是橢圓,寫出橢圓的標準方程,根據平面向量數量積運算和點A在拋物線上求出拋物線C的標準方程;(2)設出點P的坐標,再表示出點N和Q的坐標,根據題意求出的值,即可判斷結果是否成立.【詳解】(1)由題知,,所以,因此動點的軌跡是以,為焦點的橢圓,又知,,所以曲線的標準方程為.又由題知,所以,所以,又因為點在拋物線上,所以,所以拋物線的標準方程為.(2)設,,由題知,所以,即,所以,又因為,,所以,所以為定值,且定值為1.【點睛】本題考查了圓錐曲線的定義與性質的應用問題,考查拋物線的幾何性質及點在曲線上的代換,也考查了推理與運算能力,是中檔題.21.(Ⅰ)直線的直角坐標方程為;曲線的普通方程為;(Ⅱ).【解析】
(I)利用參數方程、普通方程、極坐標方程間的互化公式即可;(II)將直線參數方程代入拋物線的普通方程,可得,而根據直線參數方程的幾何意義,知,代入即可解決.【詳解】由可得直線的直角坐標方程為由曲線的參數方程,消去參數可得曲線的普通方程為.易知點在直線上,直線的參數方程為(為參數).將直線的參數方程代入曲線的普通方程,并整理得.設是方程的兩根,則有.【點睛】本題考查參數方程、普通方程、極坐標方程間的互化,直線參數方程的幾何意義,是一道容易題.22.(1)(2)【解析】
(1)利用消參法以及點求解出的普通方程,根據極坐標與直角坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年網絡接口適配器合作協(xié)議書
- 工作假期旅游特殊證明(5篇)
- 農村畜牧養(yǎng)殖技術指導協(xié)議
- IT服務行業(yè)技術支持工作經驗證明(7篇)
- 企業(yè)級軟件開發(fā)維護合作協(xié)議
- 農村家庭土地承包經營合同
- 零售行業(yè)年度收入證明(6篇)
- 快遞配送時間保障協(xié)議
- 工程建筑資料承包包干合同
- IT行業(yè)在職員工信息真實性證明(5篇)
- 統(tǒng)編版(2024)七年級下冊道德與法治期中綜合素養(yǎng)測試卷(含答案)
- 2025年山東省濟南市萊蕪區(qū)中考一模地理試卷(原卷版+解析版)
- 測繪地理信息科技創(chuàng)新與成果轉化作業(yè)指導書
- 2025春季學期國開電大專科《政治學原理》一平臺在線形考(形考任務四)試題及答案
- SCI論文寫作與投稿 第2版-課件 14-SCI論文投稿與發(fā)表
- 快速血糖監(jiān)測操作
- 動漫游戲與衍生品開發(fā)作業(yè)指導書
- 畢業(yè)設計(論文)-垂直循環(huán)立體車庫機械設計
- 醫(yī)院會計考核試題及答案
- 十字相乘法(最終版)
- 2025年山西萬家寨水務控股集團限公司公開招聘工作人員48人自考難、易點模擬試卷(共500題附帶答案詳解)
評論
0/150
提交評論