




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是()A.2 B. C. D.22.如圖,這是根據某班40名同學一周的體育鍛煉情況繪制的條形統計圖,根據統計圖提供的信息,可得到該班40名同學一周參加體育鍛煉時間的眾數、中位數分別是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.53.下列各式:①3+3=6;②=1;③+==2;④=2;其中錯誤的有().A.3個 B.2個 C.1個 D.0個4.如圖,在平面直角坐標系中,線段AB的端點坐標為A(-2,4),B(4,2),直線y=kx-2與線段AB有交點,則K的值不可能是()A.-5 B.-2 C.3 D.55.現有三張背面完全相同的卡片,正面分別標有數字﹣1,﹣2,3,把卡片背面朝上洗勻,然后從中隨機抽取兩張,則這兩張卡片正面數字之和為正數的概率是()A. B. C. D.6.一個容量為50的樣本,在整理頻率分布時,將所有頻率相加,其和是()A.50B.0.02C.0.1D.17.﹣3的相反數是()A. B. C. D.8.如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數為()A.15° B.55° C.65° D.75°9.今年我市計劃擴大城區綠地面積,現有一塊長方形綠地,它的短邊長為60m,若將短邊增長到長邊相等(長邊不變),使擴大后的棣地的形狀是正方形,則擴大后的綠地面積比原來增加1600,設擴大后的正方形綠地邊長為xm,下面所列方程正確的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=160010.已知平面內不同的兩點A(a+2,4)和B(3,2a+2)到x軸的距離相等,則a的值為(
)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5二、填空題(本大題共6個小題,每小題3分,共18分)11.某次數學測試,某班一個學習小組的六位同學的成績如下:84、75、75、92、86、99,則這六位同學成績的中位數是_____.12.下列對于隨機事件的概率的描述:①拋擲一枚均勻的硬幣,因為“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,就會有50次“正面朝上”;②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機摸出一個球,恰好是白球的概率是0.2;③測試某射擊運動員在同一條件下的成績,隨著射擊次數的增加,“射中9環以上”的頻率總是在0.85附近擺動,顯示出一定的穩定性,可以估計該運動員“射中9環以上”的概率是0.85其中合理的有______(只填寫序號).13.若代數式在實數范圍內有意義,則x的取值范圍是_______.14.如圖,在正五邊形ABCDE中,AC與BE相交于點F,則∠AFE的度數為_____.15.如圖,BD是矩形ABCD的一條對角線,點E,F分別是BD,DC的中點.若AB=4,BC=3,則AE+EF的長為_____.16.已知x3=y三、解答題(共8題,共72分)17.(8分)現有一次函數y=mx+n和二次函數y=mx2+nx+1,其中m≠0,若二次函數y=mx2+nx+1經過點(2,0),(3,1),試分別求出兩個函數的解析式.若一次函數y=mx+n經過點(2,0),且圖象經過第一、三象限.二次函數y=mx2+nx+1經過點(a,y1)和(a+1,y2),且y1>y2,請求出a的取值范圍.若二次函數y=mx2+nx+1的頂點坐標為A(h,k)(h≠0),同時二次函數y=x2+x+1也經過A點,已知﹣1<h<1,請求出m的取值范圍.18.(8分)某校有3000名學生.為了解全校學生的上學方式,該校數學興趣小組以問卷調查的形式,隨機調查了該校部分學生的主要上學方式(參與問卷調查的學生只能從以下六個種類中選擇一類),并將調查結果繪制成如下不完整的統計圖.種類ABCDEF上學方式電動車私家車公共交通自行車步行其他某校部分學生主要上學方式扇形統計圖某校部分學生主要上學方式條形統計圖根據以上信息,回答下列問題:參與本次問卷調查的學生共有____人,其中選擇B類的人數有____人.在扇形統計圖中,求E類對應的扇形圓心角α的度數,并補全條形統計圖.若將A、C、D、E這四類上學方式視為“綠色出行”,請估計該校每天“綠色出行”的學生人數.19.(8分)如圖,已知點D在反比例函數y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3).過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=.(1)求反比例函數y=和直線y=kx+b的解析式;(2)連接CD,試判斷線段AC與線段CD的關系,并說明理由;(3)點E為x軸上點A右側的一點,且AE=OC,連接BE交直線CA與點M,求∠BMC的度數.20.(8分)為了維護國家主權和海洋權利,海監部門對我國領海實現了常態化巡航管理,如圖,正在執行巡航任務的海監船以每小時50海里的速度向正東方航行,在A處測得燈塔P在北偏東60°方向上,繼續航行1小時到達B處,此時測得燈塔P在北偏東30°方向上.求∠APB的度數;已知在燈塔P的周圍25海里內有暗礁,問海監船繼續向正東方向航行是否安全?.21.(8分)小雁塔位于唐長安城安仁坊(今陜西省西安市南郊)薦福寺內,又稱“薦福寺塔”,建于唐景龍年間,與大雁塔同為唐長安城保留至今的重要標志.小明在學習了銳角三角函數后,想利用所學知識測量“小雁塔”的高度,小明在一棟高9.982米的建筑物底部D處測得塔頂端A的仰角為45°,接著在建筑物頂端C處測得塔頂端A的仰角為37.5°.已知AB⊥BD,CD⊥BD,請你根據題中提供的相關信息,求出“小雁塔”的高AB的長度(結果精確到1米)(參考數據:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)22.(10分)我校春晚遴選男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去參加主持人精選。(1)選中的男主持人為甲班的頻率是(2)選中的男女主持人均為甲班的概率是多少?(用樹狀圖或列表)23.(12分)平面直角坐標系xOy(如圖),拋物線y=﹣x2+2mx+3m2(m>0)與x軸交于點A、B(點A在點B左側),與y軸交于點C,頂點為D,對稱軸為直線l,過點C作直線l的垂線,垂足為點E,聯結DC、BC.(1)當點C(0,3)時,①求這條拋物線的表達式和頂點坐標;②求證:∠DCE=∠BCE;(2)當CB平分∠DCO時,求m的值.24.我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質,即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【詳解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,點M是OP的中點,∴DM=OP=.故選C.考點:角平分線的性質;含30度角的直角三角形;直角三角形斜邊上的中線;勾股定理.2、A【解析】
根據中位數、眾數的概念分別求得這組數據的中位數、眾數.【詳解】解:眾數是一組數據中出現次數最多的數,即8;而將這組數據從小到大的順序排列后,處于20,21兩個數的平均數,由中位數的定義可知,這組數據的中位數是9.故選A.【點睛】考查了中位數、眾數的概念.本題為統計題,考查眾數與中位數的意義,中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數,如果中位數的概念掌握得不好,不把數據按要求重新排列,就會錯誤地將這組數據最中間的那個數當作中位數.3、A【解析】3+3=6,錯誤,無法計算;②=1,錯誤;③+==2不能計算;④=2,正確.故選A.4、B【解析】
當直線y=kx-2與線段AB的交點為A點時,把A(-2,4)代入y=kx-2,求出k=-3,根據一次函數的有關性質得到當k≤-3時直線y=kx-2與線段AB有交點;當直線y=kx-2與線段AB的交點為B點時,把B(4,2)代入y=kx-2,求出k=1,根據一次函數的有關性質得到當k≥1時直線y=kx-2與線段AB有交點,從而能得到正確選項.【詳解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴當直線y=kx-2與線段AB有交點,且過第二、四象限時,k滿足的條件為k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴當直線y=kx-2與線段AB有交點,且過第一、三象限時,k滿足的條件為k≥1.即k≤-3或k≥1.所以直線y=kx-2與線段AB有交點,則k的值不可能是-2.故選B.【點睛】本題考查了一次函數y=kx+b(k≠0)的性質:當k>0時,圖象必過第一、三象限,k越大直線越靠近y軸;當k<0時,圖象必過第二、四象限,k越小直線越靠近y軸.5、D【解析】
先找出全部兩張卡片正面數字之和情況的總數,再先找出全部兩張卡片正面數字之和為正數情況的總數,兩者的比值即為所求概率.【詳解】任取兩張卡片,數字之和一共有﹣3、2、1三種情況,其中和為正數的有2、1兩種情況,所以這兩張卡片正面數字之和為正數的概率是.故選D.【點睛】本題主要考查概率的求法,熟練掌握概率的求法是解題的關鍵.6、D【解析】所有小組頻數之和等于數據總數,所有頻率相加等于1.7、D【解析】
相反數的定義是:如果兩個數只有符號不同,我們稱其中一個數為另一個數的相反數,特別地,1的相反數還是1.【詳解】根據相反數的定義可得:-3的相反數是3.故選D.【點睛】本題考查相反數,題目簡單,熟記定義是關鍵.8、D【解析】
根據鄰補角定義可得∠ADE=15°,由平行線的性質可得∠A=∠ADE=15°,再根據三角形內角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【點睛】本題考查了平行線的性質、三角形內角和定理等,熟練掌握平行線的性質以及三角形內角和定理是解題的關鍵.9、A【解析】試題分析:根據題意可得擴建的部分相當于一個長方形,這個長方形的長和寬分別為x米和(x-60)米,根據長方形的面積計算法則列出方程.考點:一元二次方程的應用.10、A【解析】分析:根據點A(a+2,4)和B(3,2a+2)到x軸的距離相等,得到4=|2a+2|,即可解答.詳解:∵點A(a+2,4)和B(3,2a+2)到x軸的距離相等,∴4=|2a+2|,a+2≠3,解得:a=?3,故選A.點睛:考查點的坐標的相關知識;用到的知識點為:到x軸和y軸的距離相等的點的橫縱坐標相等或互為相反數.二、填空題(本大題共6個小題,每小題3分,共18分)11、85【解析】
根據中位數求法,將學生成績從小到大排列,取中間兩數的平均數即可解題.【詳解】解:將六位同學的成績按從小到大進行排列為:75,75,84,86,92,99,中位數為中間兩數84和86的平均數,∴這六位同學成績的中位數是85.【點睛】本題考查了中位數的求法,屬于簡單題,熟悉中位數的概念是解題關鍵.12、②③【解析】
大量反復試驗下頻率穩定值即概率.注意隨機事件發生的概率在0和1之間.根據事件的類型及概率的意義找到正確選項即可.【詳解】解:①拋擲一枚均勻的硬幣,因為“正面朝上”的概率是0.5,所以拋擲該硬幣100次時,大約有50次“正面朝上”,此結論錯誤;②一個不透明的袋子里裝有4個黑球,1個白球,這些球除了顏色外無其他差別.從中隨機摸出一個球,恰好是白球的概率是,此結論正確;③測試某射擊運動員在同一條件下的成績,隨著射擊次數的增加,“射中9環以上”的頻率總是在0.85附近擺動,顯示出一定的穩定性,可以估計該運動員“射中9環以上”的概率是0.85,此結論正確;故答案為:②③.【點睛】本題考查了概率的意義,解題的關鍵在于掌握計算公式.13、【解析】先根據二次根式有意義的條件列出關于x的不等式,求出x的取值范圍即可.解:∵在實數范圍內有意義,∴x-1≥2,解得x≥1.故答案為x≥1.本題考查的是二次根式有意義的條件,即被開方數大于等于2.14、72°【解析】
首先根據正五邊形的性質得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形內角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,最后利用三角形的外角的性質得到∠AFE=∠BAC+∠ABE=72°.【詳解】∵五邊形ABCDE為正五邊形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°?108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案為72°.【點睛】本題考查的是正多邊形和圓,利用數形結合求解是解答此題的關鍵15、1【解析】
先根據三角形中位線定理得到的長,再根據直角三角形斜邊上中線的性質,即可得到的長,進而得出計算結果.【詳解】解:∵點E,F分別是的中點,∴FE是△BCD的中位線,.又∵E是BD的中點,∴Rt△ABD中,,故答案為1.【點睛】本題主要考查了矩形的性質以及三角形中位線定理的運用,解題時注意:在直角三角形中,斜邊上的中線等于斜邊的一半;三角形的中位線平行于第三邊,并且等于第三邊的一半.16、7【解析】
由x3=y4可知xy【詳解】解:∵x3∴xy∴原式=xy【點睛】本題考查了分式的化簡求值.三、解答題(共8題,共72分)17、(1)y=x﹣2,y=x2++1;(2)a<;(3)m<﹣2或m>1.【解析】
(1)直接將點代入函數解析式,用待定系數法即可求解函數解析式;(2)點(2,1)代入一次函數解析式,得到n=?2m,利用m與n的關系能求出二次函數對稱軸x=1,由一次函數經過一、三象限可得m>1,確定二次函數開口向上,此時當y1>y2,只需讓a到對稱軸的距離比a+1到對稱軸的距離大即可求a的范圍.(3)將A(h,k)分別代入兩個二次函數解析式,再結合對稱抽得h=,將得到的三個關系聯立即可得到,再由題中已知?1<h<1,利用h的范圍求出m的范圍.【詳解】(1)將點(2,1),(3,1),代入一次函數y=mx+n中,,解得,∴一次函數的解析式是y=x﹣2,再將點(2,1),(3,1),代入二次函數y=mx2+nx+1,,解得,∴二次函數的解析式是.(2)∵一次函數y=mx+n經過點(2,1),∴n=﹣2m,∵二次函數y=mx2+nx+1的對稱軸是x=,∴對稱軸為x=1,又∵一次函數y=mx+n圖象經過第一、三象限,∴m>1,∵y1>y2,∴1﹣a>1+a﹣1,∴a<.(3)∵y=mx2+nx+1的頂點坐標為A(h,k),∴k=mh2+nh+1,且h=,又∵二次函數y=x2+x+1也經過A點,∴k=h2+h+1,∴mh2+nh+1=h2+h+1,∴,又∵﹣1<h<1,∴m<﹣2或m>1.【點睛】本題考點:點與函數的關系;二次函數的對稱軸與函數值關系;待定系數法求函數解析式;不等式的解法;數形結合思想是解決二次函數問題的有效方法.18、(1)450、63;⑵36°,圖見解析;(3)2460人.【解析】
(1)根據“騎電動車”上下的人數除以所占的百分比,即可得到調查學生數;用調查學生數乘以選擇類的人數所占的百分比,即可求出選擇類的人數.
(2)求出類的百分比,乘以即可求出類對應的扇形圓心角的度數;由總學生數求出選擇公共交通的人數,補全統計圖即可;
(3)由總人數乘以“綠色出行”的百分比,即可得到結果.【詳解】(1)參與本次問卷調查的學生共有:(人);選擇類的人數有:故答案為450、63;(2)類所占的百分比為:類對應的扇形圓心角的度數為:選擇類的人數為:(人).補全條形統計圖為:(3)估計該校每天“綠色出行”的學生人數為3000×(1-14%-4%)=2460人.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.19、(1),(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A點坐標可求得OA的長,再利用三角函數的定義可求得OC的長,可求得C、D點坐標,再利用待定系數法可求得直線AC的解析式;(2)由條件可證明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可證得AC⊥CD;(3)連接AD,可證得四邊形AEBD為平行四邊形,可得出△ACD為等腰直角三角形,則可求得答案.本題解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x軸,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣,設直線AC關系式為y=kx+b,∵過A(1,0),C(0,﹣2),∴,解得,∴y=x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如圖,連接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x軸,∴四邊形AEBD為平行四邊形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD為等腰直角三角形,∴∠BMC=∠DAC=41°.20、(1)30°;(2)海監船繼續向正東方向航行是安全的.【解析】
(1)根據直角的性質和三角形的內角和求解;(2)過點P作PH⊥AB于點H,根據解直角三角形,求出點P到AB的距離,然后比較即可.【詳解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)過點P作PH⊥AB于點H在Rt△APH中,∠PAH=30°,AH=PH在Rt△BPH中,∠PBH=30°,BH=PH∴AB=AH-BH=PH=50解得PH=25>25,因此不會進入暗礁區,繼續航行仍然安全.考點:解直角三角形21、43米【解析】
作CE⊥AB于E,則四邊形BDCE是矩形,BE=CD=9.982米,設AB=x.根據tan∠ACE=,列出方程即可解決問題.【詳解】解:如圖,作CE⊥AB于E.則四邊形BDCE是矩形,BE=CD=9.982米,設AB=x.在Rt△ABD中,∵∠ADB=45°,∴AB=BD=x,在Rt△AEC中,tan∠ACE==tan37.5°≈0.77,∴=0.77,解得x≈43,答:“小雁塔”的高AB的長度約為43米.【點睛】本題考查解直角三角形的應用-仰角俯角問題,銳角三角函數等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會用構建方程的思想思考問題.22、(1)(2),圖形見解析.【解析】
(1)根據概率的定義即可求出;(2)先根據題意列出樹狀圖,再利用概率公式進行求解.【詳解】(1)由題意P(選中的男主持人為甲班)=(2)列出樹狀圖如下∴P(選中的男女主持人均為甲班的)=【點睛】此題主要考查概率的計算,解題的關鍵是根據題意列出樹狀圖進行求解.23、(1)y=﹣x2+2x+3;D(1,4);(2)證明見解析;(3)m=;【解析】
(1)①把C點坐標代入y=﹣x2+2mx+3m2可求出m的值,從而得到拋物線解析式,然后把一般式配成頂點式得到D點坐標;②如圖1,先解方程﹣x2+2x+3=0得B(3,0),則可判斷△OCB為等腰直角三角形得到∠OBC=45°,再證明△CDE為等腰直角三角形得到∠DCE=45°,從而得到∠DCE=∠BCE;(2)拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,把一般式配成頂點式得到拋物線的對稱軸為直線x=m,頂點D的坐標為(m,4m2),通過解方程﹣x2+2mx+3m2=0得B(3m,0),同時確定C(0,3m2),再利用相似比表示出GF=2m2,則DG=2m2,接著證明∠DCG=∠DGC得到DC=DG,所以m2+(4m2﹣3m2)2=4m4,然后解方程可求出m.【詳解】(1)①把C(0,3)代入y=﹣x2+2mx+3m2得3m2=3,解得m1=1,m2=﹣1(舍去),∴拋物線解析式為y=﹣x2+2x+3;∵∴頂點D為(1,4);②證明:如圖1,當y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,則B(3,0),∵OC=OB,∴△OCB為等腰直角三角形,∴∠OBC=45°,∵CE⊥直線x=1,∴∠BCE=45°,∵DE=1,CE=1,∴△CDE為等腰直角三角形,∴∠DCE=45°,∴∠DCE=∠BCE;(2)解:拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,∴拋物線的對稱軸為直線x=m,頂點D
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 意向性合作協議書范本
- 2025-2030中國金屬板折彎機行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國通信外包解決方案(COS)行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國路易體癡呆癥治療行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國超聲波面部美容儀行業市場發展分析及前景趨勢與投資研究報告
- 2025-2030中國裝卸碼頭設備行業市場發展趨勢與前景展望戰略研究報告
- 下學期個人學習計劃
- 2025-2030中國蒸汽滅菌指示帶行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國芳綸紗行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國航空部附件維修行業市場發展分析及發展趨勢與投資前景研究報告
- 品管圈PDCA獲獎案例-提高壓瘡高?;颊哳A防措施落實率醫院品質管理成果匯報
- 河南輕工職業學院單招《英語》備考試題及答案
- 糖尿病抑郁癥
- 2025年中考物理終極押題猜想(長沙卷)(考試版A4)
- 2024年西藏初中學業水平考試生物卷試題真題(含答案解析)
- XX小學2025年春季教研工作計劃
- 高考復習語文作文寫作訓練講評【知識精研】《路是自己走出來的》
- 體育賽事策劃與管理全套課件
- 高標準農田施工合同
- 《熱泵技術應用》課件
- 培訓機構招生合作合同范例
評論
0/150
提交評論