




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數f(x)=的圖象大致為()A. B.C. D.2.如圖所示,三國時代數學家在《周脾算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一個內角為,若向弦圖內隨機拋擲200顆米粒(大小忽略不計,取),則落在小正方形(陰影)內的米粒數大約為()A.20 B.27 C.54 D.643.已知不重合的平面和直線,則“”的充分不必要條件是()A.內有無數條直線與平行 B.且C.且 D.內的任何直線都與平行4.要得到函數的圖象,只需將函數圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度5.等差數列中,已知,且,則數列的前項和中最小的是()A.或 B. C. D.6.設,則,則()A. B. C. D.7.已知函數(其中為自然對數的底數)有兩個零點,則實數的取值范圍是()A. B.C. D.8.函數的圖象大致是()A. B.C. D.9.已知復數,則()A. B. C. D.210.已知復數滿足,則的值為()A. B. C. D.211.tan570°=()A. B.- C. D.12.已知定義在上的函數在區間上單調遞增,且的圖象關于對稱,若實數滿足,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內角所對的邊分別是,若,,則__________.14.已知點是拋物線的焦點,,是該拋物線上的兩點,若,則線段中點的縱坐標為__________.15.已知是等比數列,且,,則__________,的最大值為__________.16.若復數(是虛數單位),則________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某職稱晉級評定機構對參加某次專業技術考試的100人的成績進行了統計,繪制了頻率分布直方圖(如圖所示),規定80分及以上者晉級成功,否則晉級失敗.晉級成功晉級失敗合計男16女50合計(1)求圖中的值;(2)根據已知條件完成下面列聯表,并判斷能否有的把握認為“晉級成功”與性別有關?(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數為,求的分布列與數學期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02418.(12分)如圖,在中,點在上,,,.(1)求的值;(2)若,求的長.19.(12分)已知函數,記不等式的解集為.(1)求;(2)設,證明:.20.(12分)已知函數,不等式的解集為.(1)求實數,的值;(2)若,,,求證:.21.(12分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優弧(圓上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當為何值時,棧道總長度最短.22.(10分)在四棱錐中,是等邊三角形,點在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設直線與平面相交于點,若,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據函數為非偶函數可排除兩個選項,再根據特殊值可區分剩余兩個選項.【詳解】因為f(-x)=≠f(x)知f(x)的圖象不關于y軸對稱,排除選項B,C.又f(2)==-<0.排除A,故選D.【點睛】本題主要考查了函數圖象的對稱性及特值法區分函數圖象,屬于中檔題.2、B【解析】
設大正方體的邊長為,從而求得小正方體的邊長為,設落在小正方形內的米粒數大約為,利用概率模擬列方程即可求解。【詳解】設大正方體的邊長為,則小正方體的邊長為,設落在小正方形內的米粒數大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應用,考查計算能力,屬于基礎題。3、B【解析】
根據充分不必要條件和直線和平面,平面和平面的位置關系,依次判斷每個選項得到答案.【詳解】A.內有無數條直線與平行,則相交或,排除;B.且,故,當,不能得到且,滿足;C.且,,則相交或,排除;D.內的任何直線都與平行,故,若,則內的任何直線都與平行,充要條件,排除.故選:.【點睛】本題考查了充分不必要條件和直線和平面,平面和平面的位置關系,意在考查學生的綜合應用能力.4、B【解析】
分析:根據三角函數的圖象關系進行判斷即可.詳解:將函數圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),
得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數的圖象變換,結合和的關系是解決本題的關鍵.5、C【解析】
設公差為,則由題意可得,解得,可得.令
,可得
當時,,當時,,由此可得數列前項和中最小的.【詳解】解:等差數列中,已知,且,設公差為,
則,解得
,.
令
,可得,故當時,,當時,,
故數列前項和中最小的是.故選:C.【點睛】本題主要考查等差數列的性質,等差數列的通項公式的應用,屬于中檔題.6、A【解析】
根據換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點睛】本題考查換底公式和對數的運算,屬于中檔題.7、B【解析】
求出導函數,確定函數的單調性,確定函數的最值,根據零點存在定理可確定參數范圍.【詳解】,當時,,單調遞增,當時,,單調遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數有兩個零點,則,∴.故選:B.【點睛】本題考查函數的零點,考查用導數研究函數的最值,根據零點存在定理確定參數范圍.8、C【解析】
根據函數奇偶性可排除AB選項;結合特殊值,即可排除D選項.【詳解】∵,,∴函數為奇函數,∴排除選項A,B;又∵當時,,故選:C.【點睛】本題考查了依據函數解析式選擇函數圖象,注意奇偶性及特殊值的用法,屬于基礎題.9、C【解析】
根據復數模的性質即可求解.【詳解】,,故選:C【點睛】本題主要考查了復數模的性質,屬于容易題.10、C【解析】
由復數的除法運算整理已知求得復數z,進而求得其模.【詳解】因為,所以故選:C【點睛】本題考查復數的除法運算與求復數的模,屬于基礎題.11、A【解析】
直接利用誘導公式化簡求解即可.【詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.【點睛】本題考查三角函數的恒等變換及化簡求值,主要考查誘導公式的應用,屬于基礎題.12、C【解析】
根據題意,由函數的圖象變換分析可得函數為偶函數,又由函數在區間上單調遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數的圖象向左平移個單位長度可得函數的圖象,由于函數的圖象關于直線對稱,則函數的圖象關于軸對稱,即函數為偶函數,由,得,函數在區間上單調遞增,則,得,解得.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用函數的單調性與奇偶性解不等式,注意分析函數的奇偶性,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求得的值,由此求得的值,再利用正弦定理求得的值.【詳解】由于,所以,所以.由正弦定理得.故答案為:【點睛】本小題主要考查正弦定理解三角形,考查同角三角函數的基本關系式,考查兩角和的正弦公式,考查三角形的內角和定理,屬于中檔題.14、2【解析】
運用拋物線的定義將拋物線上的點到焦點距離等于到準線距離,然后求解結果.【詳解】拋物線的標準方程為:,則拋物線的準線方程為,設,,則,所以,則線段中點的縱坐標為.故答案為:【點睛】本題考查了拋物線的定義,由拋物線定義將點到焦點距離轉化為點到準線距離,需要熟練掌握定義,并能靈活運用,本題較為基礎.15、5【解析】,即的最大值為16、【解析】
直接根據復數的代數形式四則運算法則計算即可.【詳解】,.【點睛】本題主要考查復數的代數形式四則運算法則的應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)列聯表見解析,有超過的把握認為“晉級成功”與性別有關;(3)分布列見解析,=3【解析】
(1)由頻率和為1,列出方程求的值;(2)由頻率分布直方圖求出晉級成功的頻率,計算晉級成功的人數,填寫列聯表,計算觀測值,對照臨界值得出結論;(3)由頻率分布直方圖知晉級失敗的頻率,將頻率視為概率,知隨機變量服從二項分布,計算對應的概率值,寫出分布列,計算數學期望.【詳解】解:(1)由頻率分布直方圖各小長方形面積總和為1,可知,解得;(2)由頻率分布直方圖知,晉級成功的頻率為,所以晉級成功的人數為(人),填表如下:晉級成功晉級失敗合計男163450女94150合計2575100假設“晉級成功”與性別無關,根據上表數據代入公式可得,所以有超過的把握認為“晉級成功”與性別有關;(3)由頻率分布直方圖知晉級失敗的頻率為,將頻率視為概率,則從本次考試的所有人員中,隨機抽取1人進行約談,這人晉級失敗的概率為0.75,所以可視為服從二項分布,即,,故,,,,.所以的分布列為:01234數學期望為.或().【點睛】本題考查了頻率分布直方圖和離散型隨機變量的分布列、數學期望的應用問題,屬于中檔題.若離散型隨機變量,則.18、(1);(2).【解析】
(1)由兩角差的正弦公式計算;(2)由正弦定理求得,再由余弦定理求得.【詳解】(1)因為,所以.因為,所以,所以.(2)在中,由,得,在中,由余弦定理可得,所以.【點睛】本題考查兩角差的正弦公式,考查正弦定理和余弦定理,屬于中檔題.19、(1);(2)證明見解析【解析】
(1)利用零點分段法將表示為分段函數的形式,由此解不等式求得不等式的解集.(2)將不等式坐標因式分解,結合(1)的結論證得不等式成立.【詳解】(1)解:,由,解得,故.(2)證明:因為,所以,,所以,所以.【點睛】本小題主要考查絕對值不等式的解法,考查不等式的證明,屬于基礎題.20、(1),.(2)見解析【解析】
(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【詳解】解:(1)不等式可化為.即有或或.解得,或或.所以不等式的解集為,故,.(2)由(1)知,,即,由,得,,當且僅當,即,時等號成立.故,即.【點睛】考查絕對值不等式的解法以及用均值定理證明不等式,中檔題.21、,;當時,棧道總長度最短.【解析】
連,,由切線長定理知:,,,,即,,則,,進而確定的取值范圍;根據求導得,利用增減性算出,進而求得取值.【詳解】解:連,,由切線長定理知:,,,又,,故,則劣弧的長為,因此,優弧的長為,又,故,,即,,所以,,,則;,,其中,,-0+單調遞減極小值單調遞增故時,所以當時,棧道總長度最短.【點睛】本題主要考查導數在函數當中的應用,屬于中檔題.22、(1)證明見解析(2)(3)【解析】
(1)取中點為,連接,由等邊三角形性質可得,再由面面垂直的性質可得,根據平行直線的性質可得,進而求證;(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,由點在棱上,可設,即可得到,再求得平面的法向量,進而利用數量積求解;(3)設,,則,求得,,即可求得點的坐標,再由與平面的法向量垂直,進而求解.【詳解】(1)證明:取中點為,連接,因為是等邊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年上海住宅租房版合同
- 特色產品收購合同范本
- 2025年山西國際商務職業學院高職單招(數學)歷年真題考點含答案解析
- 2025年天津藝術職業學院高職單招(數學)歷年真題考點含答案解析
- 2025年天津城市職業學院高職單招職業適應性測試歷年(2019-2024年)真題考點試卷含答案解析
- 蘑菇班本課程大班
- 2018年安全生產課件
- 人教版數學六年級下冊第一單元測試卷含答案
- 畢業論文答辯模版
- 腎結石知識科普
- 大學生創業導論學習通超星期末考試答案章節答案2024年
- 江蘇金陵科技集團有限公司招聘筆試題庫2024
- 2024-2025學年佛山市南海區六上數學期末達標檢測試題含解析
- 2024年四川省成都市中考地理+生物試卷真題(含答案解析)
- 2024年鄭州鐵路職業技術學院單招職業適應性測試題庫必考題
- 小學語文新課標教學目標解讀及教學建議
- 建筑防水工程技術規程DBJ-T 15-19-2020
- 2024年全民國家安全教育日知識競賽考試題庫300題(含答案)
- 艾滋病保密制度
- 認知行為療法講解
- 史丹利行業分析
評論
0/150
提交評論