




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
FieldandWaveElectromagnetics電磁場與電磁波2012.3.611.ProductsofVectors2.OrthogonalCoordinateSystemsReviewCartesianCoordinatesPositionvector:ArbitraryVectorA:2Dotproduct:Crossproduct:Differentiallength:Differentialvolume:Differentialsurface:33.GradientofaScalarField4.DivergenceofaVectorField5.DivergenceTheorem46.CurlofaVectorField7.Stokes’sTheorem8.TwoNullIdentitiesifthenifthen59.Helmholtz’sTheoremHelmholtz’sTheorem:Avectorfield(vectorpointfunction)isdeterminedtowithinanadditiveconstantifbothitsdivergenceanditscurlarespecifiedeverywhere.6MaintopicStaticElectricFields1.FundamentalPostulatesofElectrostaticsinFreeSpace2.Coulomb’sLaw3.Gauss’sLawandApplications4.
ElectricPotential
71.FundamentalPostulatesofElectrostaticsinFreeSpace1.1.ElectricfieldintensityElectircfieldintensityisdefinedastheforce
perunitchargethataverysmallstationarytestchargeexperienceswhenitisplacedinaregionwhereanelectricfieldexists.Thatis,TheelectricfieldintensityEis,thenproportionaltoandinthedirectionoftheforceF.IfFismeasuredinnewtons(N)andchargeqincoulombs(C),thenEisinnewtonspercoulomb(N/C),
whichisthesameasvoltspermeter(V/m).AninverserelationofaboveEq.givestheforceFonastationarychargeqinanelectricfieldE:81.2.FundamentalPostulatesThetwofundamentalpostulatesofelectrostaticsinfreespacespecifythedivergenceandcurlofE.Theyare
isthevolumechargedensityoffreecharges(C/m3),and0
isthepermittivityoffreespace,auniversalconstant.Equationassertsthatstaticelectricfieldsareirrotational(conservative)andimpliesthatastaticelectricfieldisnotsolenoidalunless=0.Differentialform9DivergenceTheoremWhereQisthetotalchargecontainedinvolumeVboundedbysurfaceS.EquationisaformofGauss’slaw,whichstatesthatthetotaloutwardfluxoftheelectricfieldintensityoveranyclosedsurfaceinfreespaceisequaltothetotalchargeenclosedinthesurfacedividedby0.
Stokes’sTheoremwhichassertsthatthescalarlineintegralofthestaticelectricfieldintensityaroundanyclosedpathvanishes.Thescalarproductintegratedoveranypathisthevoltagealongthatpath.ThisEq.isanexpressionofKirchhoff’svoltagelawincircuittheorythatthealgebraicsumofvoltagedropsaroundanyclosedcircuitiszero.101.2.FundamentalPostulatesDifferentialformIntegralformPostulatesofelectrostaticsinfreespace112.Coulomb’sLaw2.1.Electricfieldduetoapointcharge12Example3-1p78場點(diǎn)P
(x,y,z)y源點(diǎn)Q(x’,y’,z’)zxO132.2Coulomb’sLawWhenapointchargeq2isplacedinthefieldofanotherpointcharge
q1attheorigin,aforceF12isexperiencedbyq2duetoelectricfieldintensityE12ofq1atq2.wehave2.3ElectricfieldduetoasystemofdiscretechargesSinceelectricfieldintensityisalinearfunctionof(proportionalto)aRq/R2,theprincipleofsuperpositionapplies,andthetotalEfieldatapointisthevectorsumofthefieldscausedbyalltheindividualcharges.WecanwritetheelectricintensityatafieldpointwhosepositionvectorisRas14Letusconsiderthesimplecaseofanelectricdipolethatconsistsofapairofequalandoppositecharges+qand–q,separatedbyasmalldistance,d,asshowninFig.Electricdipolemoment,p:15電偶極子的電場線和等位線16PV’2.4ElectricfieldduetoacontinuousdistributionofchargesTheelectricfieldcausedbyacontinuousdistributionofchargecanbeobtainedbyintegrating(superposing)thecontributionofan
elementofchargeoverthechargedistribution.dv’R(V/m)17Example3-4p85-87183.Gauss’sLawandApplicationsGauss’slawassertsthatthetotaloutwardfluxoftheelectricfieldintensityoveranyclosedsurfaceinfreespaceisequaltothetotalchargeenclosedinthesurfacedividedby0.Gauss’slawisparticularlyusefulindeterminingtheE-fieldofchargedistributionswithsomesymmetryconditions,suchthatthenormalcomponentoftheelectricfieldintensityisconstantoveranenclosedsurface.TheessenceofapplyingGauss’slawliesfirstintherecognitionofsymmetryconditionsandsecondinthesuitablechoiceofasurfaceoverwhichthenormalcomponentofEresultingfromagivenchargedistributionisaconstant.SuchasurfaceisreferredtoasaGaussiansurface.1920Example3-5p8821xzyr21rO例4求長度為L,線密度為的均勻線分布電荷的電場強(qiáng)度。
令圓柱坐標(biāo)系的z軸與線電荷的長度方位一致,且中點(diǎn)為坐標(biāo)原點(diǎn)。由于結(jié)構(gòu)旋轉(zhuǎn)對稱,場強(qiáng)與方位角
無關(guān)。因?yàn)殡妶鰪?qiáng)度的方向無法判斷,不能應(yīng)用高斯定律,必須直接求積。22
因場量與無關(guān),為了方便起見,可令觀察點(diǎn)P
位于yz平面,即,那么xzyr21rO考慮到23求得當(dāng)長度L
時(shí),1
0,2,則24Example3-6p8925Example3-7p9026274.ElectricPotentialWewanttomaketwomorepointsaboutEq.First,theinclusionofthenegativesignisnecessaryinordertoconformwiththeconventionthatingoingagainsttheEfieldtheelectricpotential
Vincreases.Second,whenwedefinedthegradientofascalarfield,thatthedirectionofVisnormaltothesurfacesofconstantV.hencethefieldlinesorstreamlinesareeverywhere
perpendiculartoequipotentiallinesandequipotentialsurfaces.28Electricpotentialdoeshavephysicalsignificance,anditisrelatedtotheworkdoneincarryingachargefromonepointtoanother.Aswedefinedtheelectricfieldintensityastheforceactingonaunittestcharge.Therefore,inmovingaunitchargefrompointP1
topointP2
inanelectricfield,workmustbedoneagainstthefield
andisequaltoAnalogoustotheconceptofpotentialenergyinmechanics,AboveequationrepresentsthedifferenceinelectricpotentialenergyofaunitchargebetweenpointP2andpointP1.
DenotingtheelectricpotentialenergyperunitchargebyV.theelectricpotential,wehave29Wehavedefinedapotentialdifference(electrostaticvoltage)betweenpointsP2andP1.Itmakesnomoresensetotalkabouttheabsolutepotentialofapointthanabouttheabsolutephaseofphasorortheabsolutealtitudeofageographicallocation;areferencezero-potentialpoint,areferencezero(usuallyatt=0),orareferencezeroaltitude(usuallyatsealevel)mustfirstbespecified.Inmost(butnotall)casesthezero-potentialpointistakenatinfinity.Whenthereferencezero-potentialpointisnotatinfinity,itshouldbespecificallystated.30ElectricPotentialduetoaChargeDistributionForasystemofndiscretepointchargesq1,q2,…,qnTheelectricpotentialdueto
onepointcharge31ForavolumechargedistributionForasurfacechargedistribution
Foralinechargedistribution
Asanexample,letusagainconsideranelectricdipoleconsistingofcharges+qand–qwithasmallseparationd.Calculatetheelectricfieldintensityproducedbytheelectricdipole.32TheelectricpotentialatPproducedbyanelectricdipolecanbewrittendowndirectly:Solution:33Makeatwo-dimensionalsketchoftheequipotentiallinesandtheelectricfieldlinesforanelectricdipole.34Example3-9P98-9935TheprecedingexampleillustratestheprocedurefordeterminingEbyfirstfindingVwhenGauss’slawcannotbeconvenientlyapplied.However,weemphasizethatifsymmetryconditionsexistsuchthataGaussiansurfacecanbeconstructedoverwhichE·dsisconstant,itisalwayseasiertodetermineEdirectly.ThepotentialV,if
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年電加熱油炸機(jī)項(xiàng)目可行性研究報(bào)告
- 2025年環(huán)氧穩(wěn)定轉(zhuǎn)化型帶銹底漆項(xiàng)目可行性研究報(bào)告
- 2025年王漿項(xiàng)目可行性研究報(bào)告
- 2025年物流周轉(zhuǎn)臺車項(xiàng)目可行性研究報(bào)告
- 揚(yáng)州環(huán)境資源職業(yè)技術(shù)學(xué)院《道路橋梁工程技術(shù)專業(yè)英語》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東女子學(xué)院《體育公共關(guān)系》2023-2024學(xué)年第二學(xué)期期末試卷
- 吉林省白山市重點(diǎn)中學(xué)2025年高三高考模擬試題(一)生物試題含解析
- 中央民族大學(xué)《微積分基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025春新版六年級下冊語文必背古詩文
- 西安財(cái)經(jīng)大學(xué)行知學(xué)院《天然藥物化學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2023年吉林省松原市中考物理一模試卷
- 學(xué)校聘用教師勞動合同書5篇
- 2024年07月山東興業(yè)銀行濟(jì)南分行濟(jì)南管理部招考筆試歷年參考題庫附帶答案詳解
- DB 23T 1501-2013 水利堤(岸)坡防護(hù)工程格賓與雷諾護(hù)墊施工技術(shù)規(guī)范
- 2024年初中級攝影師資格鑒定考試題庫(含答案)
- 2025年徽商集團(tuán)招聘筆試參考題庫含答案解析
- 《初中生物實(shí)驗(yàn)教學(xué)的創(chuàng)新與實(shí)踐》
- 控制計(jì)劃課件教材-2024年
- 共同辦展會合作協(xié)議書范文范本
- 《如何有效組織幼兒開展體能大循環(huán)活動》課件
- 第19課+資本主義國家的新變化+教學(xué)設(shè)計(jì) 高一下學(xué)期統(tǒng)編版(2019)必修中外歷史綱要下
評論
0/150
提交評論