2022年福建省龍巖市龍巖二中高考數學必刷試卷含解析_第1頁
2022年福建省龍巖市龍巖二中高考數學必刷試卷含解析_第2頁
2022年福建省龍巖市龍巖二中高考數學必刷試卷含解析_第3頁
2022年福建省龍巖市龍巖二中高考數學必刷試卷含解析_第4頁
2022年福建省龍巖市龍巖二中高考數學必刷試卷含解析_第5頁
免費預覽已結束,剩余13頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某醫院擬派2名內科醫生、3名外科醫生和3名護士共8人組成兩個醫療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫生、外科醫生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種2.已知數列的前項和為,且,,,則的通項公式()A. B. C. D.3.自2019年12月以來,在湖北省武漢市發現多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強的傳染性各級政府反應迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內.某社區按上級要求做好在鄂返鄉人員體格檢查登記,有3個不同的住戶屬在鄂返鄉住戶,負責該小區體格檢查的社區診所共有4名醫生,現要求這4名醫生都要分配出去,且每個住戶家里都要有醫生去檢查登記,則不同的分配方案共有()A.12種 B.24種 C.36種 D.72種4.已知函數滿足,當時,,則()A.或 B.或C.或 D.或5.在平面直角坐標系中,將點繞原點逆時針旋轉到點,設直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.6.根據最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關系數為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關7.已知函數,,若成立,則的最小值是()A. B. C. D.8.已知函數,若,則的取值范圍是()A. B. C. D.9.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.10.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或111.已知方程表示的曲線為的圖象,對于函數有如下結論:①在上單調遞減;②函數至少存在一個零點;③的最大值為;④若函數和圖象關于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④12.已知向量,且,則等于()A.4 B.3 C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.某部隊在訓練之余,由同一場地訓練的甲?乙?丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰士既不在同一行,也不在同一列的概率為______.14.已知圓柱的上下底面的中心分別為,過直線的平面截該圓柱所得的截面是面積為36的正方形,則該圓柱的體積為____15.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數”.某校在周末學生業余興趣活動中開展了“六藝”知識講座,每藝安排一節,連排六節,則滿足“禮”與“樂”必須排在前兩節,“射”和“御”兩講座必須相鄰的不同安排種數為________.16.已知向量,且,則實數的值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(是自然對數的底數,).(1)求函數的圖象在處的切線方程;(2)若函數在區間上單調遞增,求實數的取值范圍;(3)若函數在區間上有兩個極值點,且恒成立,求滿足條件的的最小值(極值點是指函數取極值時對應的自變量的值).18.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.19.(12分)設等差數列滿足,.(1)求數列的通項公式;(2)求的前項和及使得最小的的值.20.(12分)市民小張計劃貸款60萬元用于購買一套商品住房,銀行給小張提供了兩種貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個月的還款額均相同.銀行規定,在貸款到賬日的次月當天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張該筆貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現已得知第一個還款月應還4900元,最后一個還款月應還2510元,試計算小張該筆貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張該筆貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經濟利益的角度來考慮,小張應選擇哪種還款方式.參考數據:.21.(12分)已知函數.(1)解不等式;(2)記函數的最大值為,若,證明:.22.(10分)已知圓:和拋物線:,為坐標原點.(1)已知直線和圓相切,與拋物線交于兩點,且滿足,求直線的方程;(2)過拋物線上一點作兩直線和圓相切,且分別交拋物線于兩點,若直線的斜率為,求點的坐標.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據條件2名內科醫生,每個村一名,3名外科醫生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫生和1名護士,根據排列組合進行計算即可.【詳解】2名內科醫生,每個村一名,有2種方法,3名外科醫生和3名護士,平均分成兩組,要求外科醫生和護士都有,則分1名外科,2名護士和2名外科醫生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于常考題型.2.C【解析】

利用證得數列為常數列,并由此求得的通項公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數列,所以,故.故選:C【點睛】本小題考查數列的通項與前項和的關系等基礎知識;考查運算求解能力,邏輯推理能力,應用意識.3.C【解析】

先將4名醫生分成3組,其中1組有2人,共有種選法,然后將這3組醫生分配到3個不同的住戶中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數為種.故選:C【點睛】此題考查的是排列組合知識,解此類題時一般先組合再排列,屬于基礎題.4.C【解析】

簡單判斷可知函數關于對稱,然后根據函數的單調性,并計算,結合對稱性,可得結果.【詳解】由,可知函數關于對稱當時,,可知在單調遞增則又函數關于對稱,所以且在單調遞減,所以或,故或所以或故選:C【點睛】本題考查函數的對稱性以及單調性求解不等式,抽象函數給出式子的意義,比如:,,考驗分析能力,屬中檔題.5.A【解析】

設直線直線與軸正半軸所成的最小正角為,由任意角的三角函數的定義可以求得的值,依題有,則,利用誘導公式即可得到答案.【詳解】如圖,設直線直線與軸正半軸所成的最小正角為因為點在角的終邊上,所以依題有,則,所以,故選:A【點睛】本題考查三角函數的定義及誘導公式,屬于基礎題.6.D【解析】

對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數據中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關,故D正確.故選D.【點睛】本題主要考查線性回歸方程的性質,意在考查學生對該知識的理解掌握水平和分析推理能力.7.A【解析】分析:設,則,把用表示,然后令,由導數求得的最小值.詳解:設,則,,,∴,令,則,,∴是上的增函數,又,∴當時,,當時,,即在上單調遞減,在上單調遞增,是極小值也是最小值,,∴的最小值是.故選A.點睛:本題易錯選B,利用導數法求函數的最值,解題時學生可能不會將其中求的最小值問題,通過構造新函數,轉化為求函數的最小值問題,另外通過二次求導,確定函數的單調區間也很容易出錯.8.B【解析】

對分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數,由得或解得.故選:B.【點睛】本題考查利用分段函數性質解不等式,屬于基礎題.9.C【解析】

先計算出總的基本事件的個數,再計算出兩張都沒獲獎的個數,根據古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關系,意在考查數學建模、數學計算能力,屬于基礎題.10.D【解析】

求得直線的斜率,利用曲線的導數,求得切點坐標,代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據切線方程求參數,屬于基礎題.11.C【解析】

分四類情況進行討論,然后畫出相對應的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當時,,此時不存在圖象;(2)當時,,此時為實軸為軸的雙曲線一部分;(3)當時,,此時為實軸為軸的雙曲線一部分;(4)當時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調遞減,所以①正確;對于②,函數與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數圖象的對稱性可知③錯誤;對于④,函數和圖象關于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,函數的圖象與性質,函數的零點概念,考查了數形結合的數學思想.12.D【解析】

由已知結合向量垂直的坐標表示即可求解.【詳解】因為,且,,則.故選:.【點睛】本題主要考查了向量垂直的坐標表示,意在考查學生對這些知識的理解掌握水平,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

分兩步進行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算出概率即可.【詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的戰士既不在同一行,也不在同一列的概率.故答案為:.【點睛】本題考查了分步計數原理,排列與組合知識,考查了轉化能力,屬于中檔題.14.【解析】

由軸截面是正方形,易求底面半徑和高,則圓柱的體積易求.【詳解】解:因為軸截面是正方形,且面積是36,所以圓柱的底面直徑和高都是6故答案為:【點睛】考查圓柱的軸截面和其體積的求法,是基礎題.15.【解析】

分步排課,首先將“禮”與“樂”排在前兩節,然后,“射”和“御”捆綁一一起作為一個元素與其它兩個元素合起來全排列,同時它們內部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節,有種不同的排法;第二步:將“射”和“御”兩節講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節,“射”和“御”兩節講座必須相鄰的不同安排種數為.故答案為:1.【點睛】本題考查排列的應用,排列組合問題中,遵循特殊元素特殊位置優先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.16.【解析】∵=(1,2),=(x,1),則=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.點睛:由向量的數乘和坐標加減法運算求得,然后利用向量共線的坐標表示列式求解x的值.若=(a1,a2),=(b1,b2),則⊥?a1a2+b1b2=1,∥?a1b2﹣a2b1=1.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2);(3).【解析】

(1)利用導數的幾何意義計算即可;(2)在上恒成立,只需,注意到;(3)在上有兩根,令,求導可得在上單調遞減,在上單調遞增,所以且,,,求出的范圍即可.【詳解】(1)因為,所以,當時,,所以切線方程為,即.(2),.因為函數在區間上單調遞增,所以,且恒成立,即,所以,即,又,故,所以實數的取值范圍是.(3).因為函數在區間上有兩個極值點,所以方程在上有兩不等實根,即.令,則,由,得,所以在上單調遞減,在上單調遞增,所以,解得且.又由,所以,且當和時,單調遞增,當時,單調遞減,是極值點,此時令,則,所以在上單調遞減,所以.因為恒成立,所以.若,取,則,所以.令,則,.當時,;當時,.所以,所以在上單調遞增,所以,即存在使得,不合題意.滿足條件的的最小值為-4.【點睛】本題考查導數的綜合應用,涉及到導數的幾何意義,利用導數研究函數的單調性、極值點,不等式恒成立等知識,是一道難題.18.(I)證明見解析;(II)1【解析】

(I)過D作DE⊥BC于E,連接SE,根據勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計算夾角得到答案.【詳解】(I)過D作DE⊥BC于E,連接SE,根據角度的垂直關系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過點D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,SD2=S故sin∠ESD=【點睛】本題考查了線線垂直,線面夾角,意在考查學生的計算能力和空間想象能力.19.(1)(2);時,取得最小值【解析】

(1)設等差數列的公差為,由,結合已知,聯立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設等差數列的公差為,由及,得解得數列的通項公式為(2)由(1)知時,取得最小值.【點睛】本題解題關鍵是掌握等差數列通項公式和前項和公式,考查了分析能力和計算能力,屬于基礎題.20.(1)289200元;(2)能夠獲批;(3)應選擇等額本金還款方式【解析】

(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數列,即可由等差數列的前n項和公式求得其還款總額,減去本金即為還款的利息;(2)根據題意,采取等額本息的還款方式,每月還款額為一等比數列,設小張每月還款額為元,由等比數列求和公式及參考數據,即可求得其還款額,與收入的一半比較即可判斷;(3)計算出等額本息還款方式時所付出的總利息,兩個利息比較即可判斷.【詳解】(1)由題意可知,等額本金還款方式中,每月的還款額構成一個等差數列,記為,表示數列的前項和,則,,則,故小張該筆貸款的總利息為元.(2)設小張每月還款額為元,采取等額本息的還款方式,每月還款額為一等比數列,則,所以,即,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論