課程改革實踐中若干問題思考_第1頁
課程改革實踐中若干問題思考_第2頁
課程改革實踐中若干問題思考_第3頁
課程改革實踐中若干問題思考_第4頁
課程改革實踐中若干問題思考_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

課程改革實踐中若干問題思考常州市教研室呂聽聽一、繼承發展、辨證看待過去的教學傳統

1、兩大課題研究:“平面幾何入門”和“加強知識發生過程”,使常州的數學教學在全省乃至全國都產生了較大影響。2、幾點經驗:

(1)、教學目標多元化、(2)、把靜態知識轉化為動態的問題(3)、重視系統訓練,注意知識的梳理和結構掌握4、存在問題:重傳承文明甚于重創新精神,教知識而不是教創造;重結果甚于重過程,以冰冷的美麗代替火熱的思考;重標準答案甚于重個性發展,缺乏對學生情感態度和個性品質的關注。5、辨證對待傳統教學,不盲目繼承,更不要完全否定,正視存在的問題,根據新時代的要求走一條自己的路。

二、基本理念?人人學有價值的數學?人人都能獲得必需的數學?不同的人在數學上獲得不同的發展?人人學有價值的數學1、作為教育內容的數學,應滿足學生未來社會生活的需要,能適應學生個性發展的要求,并有益于啟迪思維、開發智力。2、有價值的數學不僅是對學生進一步學習有用的數學,而且是對學生從事任何事業都有用的數學。

案例:有一則廣告聲稱:有75%的人使用本公司的產品。你聽了這則廣告后有什么想法?(《標準》第81頁)1、培養對數據的感覺

2、剝奪了教師在課堂上指揮一切的權力

3、實現了知識與技能的目標

4、學生自己的數學思考?人人都能獲得必需的數學

有價值的數學應該、也能夠為每一個學生所掌握。《標準》中所規定的內容及教學要求是最基本的,是每一智力正常的兒童都能學會的。?不同的人在數學上獲得不同的發展1、如何看待當前數學教學中存在的教師和學生的兩極分化現象。2、如何對不同的學生提供不同的教學資源,使不同學習能力的學生得到不同的發展。三、新理念下教師的教學行為1、正確認識教育

第一、應該讓受教育者知道世界是什么樣子的,讓他成為一個有知識的人,一個客觀的人。第二、應該讓受教育者知道世界為什么是這樣的,讓他成為一個會思考的人、有理性的人。第三、應該讓受教育者知道怎樣才能使世界更美好,讓他成為一個勇于探索、善于創新的人。2、正確認識數學教育

(1)建構主義認為數學學習并非是學生對于老師所予知識的被動接受,而是一個以學生已有知識經驗為礎的主動建構。

(2)夸美紐斯說:教什么活動最好的方法是演示,而弗賴登塔爾說:學什么活動最好的方法是做。這反映了兩種不同的教學觀。(3)現代教學首先關注學生的學,認為教師傳遞的僅僅是知識的信息而不是知識本身,知識要靠學生的主動建構才能獲得,因此先鼓勵學生去做,在做中學。

(4)《標準》指出:學生是數學學習的主人,教師是數學學習的組織者、引導者和合作者。四、學生學習行為的轉變

有效的數學學習活動不能單純地依賴模仿和記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。

探究性學習是在新課程理念下學生學習數學的主要學習形式。1、探究性學習的意義

探究性學習是指立足于教學內容,引導學生自主參與開展的對某些數學問題的深入探討,或者從數學的角度對某些日常生活中和其它學科中出現的問題進行研究的活動。

有利于培養學生對數學的情感,增強自信心和意志力;有利于加深學生對所學知識的理解,掌握解決問題的方法和策略;有利于培養學生的自主意識和合作精神,促進學生的全面發展。2、探究性學習的理論依據(1)學生學習數學的最有效途徑是進行再創造,不斷調動已有的知識經驗并創造新經驗,通過同化和順應,不斷形成數學的新的認知結構。(2)主客體的相互作用正是認識活動的本質所在,再發現的過程必須由學生自己去積極產業參與,而不是在老師的強迫下被動地進行。3、探究性學習的過程學生生活環境對數學的客觀需要的力量看成是環境的力量。環境的力量傳統的力量問題情境發現問題提出問題研究問題解決問題形成理論應用理論解決問題抽象概括一般化、抽象、概括觀察、抽象、概括學生在以前學習過程種形成的數學認知結構需要不斷發展的力量看成是傳統的力量。4、探究性學習的內容

探究性學習要從教材內容、教學設施、學生能力等的實際情況出發,因材施教,因地制宜。

探究性問題應可塑性、開發性,并具有如下特征。A、對學生來說不是常規的,不能靠簡單的模仿來解決。B、可以是一種情景,其中隱含的數學問題要學生自己去提出、求解并作出解釋。C、具有趣味和魅力,能引起學生的思考,并能對學生提出智力挑戰。D、不一定有終究的答案,各種不同水平的學生都可以由淺入深地作出不同的回答。E、解決它往往需伴以個人或小組的數學活動。12345678910111213141516171819202122232425262728293031(1)陰影方框中的9個數之和與該方框正中間的數有什么關系?(2)這個關系對其他方框成立嗎?你能用代數式表示這個關系嗎?(3)這個關系對任何一個月的月歷都成立嗎?為什么?(4)你還能提出那些問題?下表是某月的月歷案例5、探究性學習的形式

中學數學探究性學習可以分為形成性探究、建構性探究、應用性探究三種類型。

根據探究性學習的操作方法和思維形式,又有實驗探究、歸納探究、類比探究、發散探究、演繹探究等多種形式。形成性探究建構性探究應用性探究實驗探究發散探究歸納探究類比探究……演繹探究形成性探究案例

試研究k、b的取值對一次函數y=kx+b(k=0)的圖象的影響,并討論一次函數的圖象和性質。建構性探究案例由體育委員統計喜歡各種球類的人數,制成扇行統計圖。學生發現各個區域畫完后,出現少掉或多出零點幾度的情況。方法一:使用分數而不用百分數。方法二:平均分配給各區域。方法三:分配加權。應用性探究案例暗箱里有九個白球,一個紅球。怎樣用摸球游戲說明傳統七位數體育彩票獲特等獎的可能性?第一類同學提出:摸到紅球的可能性相當于中特等獎。第二類同學提出:相當于連續摸七次,每次都摸到紅球。第三類同學提出:相當于一千萬個球中有一個紅球,從

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論