山東省青島市城陽第十三中學2022年畢業升學考試模擬卷數學卷含解析_第1頁
山東省青島市城陽第十三中學2022年畢業升學考試模擬卷數學卷含解析_第2頁
山東省青島市城陽第十三中學2022年畢業升學考試模擬卷數學卷含解析_第3頁
山東省青島市城陽第十三中學2022年畢業升學考試模擬卷數學卷含解析_第4頁
山東省青島市城陽第十三中學2022年畢業升學考試模擬卷數學卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點A、B、C、D、O都在方格紙的格點上,若△COD是由△AOB繞點O按逆時針方向旋轉而得,則旋轉的角度為()A.30° B.45°C.90° D.135°2.某廠接到加工720件衣服的訂單,預計每天做48件,正好按時完成,后因客戶要求提前5天交貨,設每天應多做x件才能按時交貨,則x應滿足的方程為()A. B.C. D.3.若實數m滿足,則下列對m值的估計正確的是()A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<24.如圖,若a<0,b>0,c<0,則拋物線y=ax2+bx+c的大致圖象為()A. B. C. D.5.如圖,已知直線AD是⊙O的切線,點A為切點,OD交⊙O于點B,點C在⊙O上,且∠ODA=36°,則∠ACB的度數為()A.54°B.36°C.30°D.27°6.滴滴快車是一種便捷的出行工具,計價規則如下表:計費項目

里程費

時長費

遠途費

單價

1.8元/公里

0.3元/分鐘

0.8元/公里

注:車費由里程費、時長費、遠途費三部分構成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠途費的收取方式為:行車里程7公里以內(含7公里)不收遠途費,超過7公里的,超出部分每公里收0.8元.

小王與小張各自乘坐滴滴快車,行車里程分別為6公里與8.5公里,如果下車時兩人所付車費相同,那么這兩輛滴滴快車的行車時間相差()A.10分鐘 B.13分鐘 C.15分鐘 D.19分鐘7.若※是新規定的某種運算符號,設a※b=b2-a,則-2※x=6中x的值()A.4 B.8 C.2 D.-28.小桐把一副直角三角尺按如圖所示的方式擺放在一起,其中,,,,則等于A. B. C. D.9.將一副三角板(∠A=30°)按如圖所示方式擺放,使得AB∥EF,則∠1等于()A.75° B.90° C.105° D.115°10.桌面上有A、B兩球,若要將B球射向桌面任意一邊的黑點,則B球一次反彈后擊中A球的概率是()A. B. C. D.11.2014年我省財政收入比2013年增長8.9%,2015年比2014年增長9.5%,若2013年和2015年我省財政收入分別為a億元和b億元,則a、b之間滿足的關系式為()A.b=a(1+8.9%+9.5%) B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%) D.b=a12.據調查,某班20為女同學所穿鞋子的尺碼如表所示,尺碼(碼)3435363738人數251021則鞋子尺碼的眾數和中位數分別是()A.35碼,35碼 B.35碼,36碼 C.36碼,35碼 D.36碼,36碼二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若一個圓錐的底面圓的周長是cm,母線長是,則該圓錐的側面展開圖的圓心角度數是_____.14.一個不透明的布袋里裝有5個紅球,2個白球,3個黃球,它們除顏色外其余都相同,從袋中任意摸出2個球,都是黃球的概率為.15.因式分解:a2b+2ab+b=.16.如圖,Rt△ABC的直角邊BC在x軸負半軸上,斜邊AC上的中線BD的反向延長線交y軸正半軸于點E,雙曲線y=(x<0)的圖象經過點A,S△BEC=8,則k=_____.17.函數y=中自變量x的取值范圍是___________.18.如圖,D,E分別是△ABC的邊AB、BC上的點,且DE∥AC,AE、CD相交于點O,若S△DOE:S△COA=1:16,則S△BDE與S△CDE的比是___________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,BC的延長線于過點A的直線相交于點E,且∠B=∠EAC.(1)求證:AE是⊙O的切線;(2)過點C作CG⊥AD,垂足為F,與AB交于點G,若AG?AB=36,tanB=,求DF的值20.(6分)在某小學“演講大賽”選拔賽初賽中,甲、乙、丙三位評委對小選手的綜合表現,分別給出“待定”(用字母W表示)或“通過”(用字母P表示)的結論.(1)請用樹狀圖表示出三位評委給小選手琪琪的所有可能的結論;(2)對于小選手琪琪,只有甲、乙兩位評委給出相同結論的概率是多少?(3)比賽規定,三位評委中至少有兩位給出“通過”的結論,則小選手可入圍進入復賽,問琪琪進入復賽的概率是多少?21.(6分)在?ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.(1)求證:四邊形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DE=4,求tan∠BAF的值.22.(8分)如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.(=1.73,結果保留一位小數.)23.(8分)已知:如圖,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.求:(1)求∠CDB的度數;(2)當AD=2時,求對角線BD的長和梯形ABCD的面積.24.(10分)如圖,在四邊形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=3cm,BC=5cm,AE=AB,點P從B點出發,以1cm/s的速度沿BC→CD→DA運動至A點停止,則從運動開始經過多少時間,△BEP為等腰三角形.25.(10分)某商場要經營一種新上市的文具,進價為20元,試營銷階段發現:當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數關系式;求銷售單價為多少元時,該文具每天的銷售利潤最大;商場的營銷部結合上述情況,提出了A、B兩種營銷方案方案A:該文具的銷售單價高于進價且不超過30元;方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元請比較哪種方案的最大利潤更高,并說明理由26.(12分)如圖,AB為⊙O的直徑,直線BM⊥AB于點B,點C在⊙O上,分別連接BC,AC,且AC的延長線交BM于點D,CF為⊙O的切線交BM于點F.(1)求證:CF=DF;(2)連接OF,若AB=10,BC=6,求線段OF的長.27.(12分)如圖,AB是⊙O的一條弦,E是AB的中點,過點E作EC⊥OA于點C,過點B作⊙O的切線交CE的延長線于點D.(1)求證:DB=DE;(2)若AB=12,BD=5,求⊙O的半徑.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據勾股定理求解.【詳解】設小方格的邊長為1,得,OC=,AO=,AC=4,∵OC2+AO2==16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故選C.【點睛】考點:勾股定理逆定理.2、D【解析】

因客戶的要求每天的工作效率應該為:(48+x)件,所用的時間為:,根據“因客戶要求提前5天交貨”,用原有完成時間減去提前完成時間,可以列出方程:.故選D.3、A【解析】試題解析:∵,∴m2+2+=0,∴m2+2=-,∴方程的解可以看作是函數y=m2+2與函數y=-,作函數圖象如圖,在第二象限,函數y=m2+2的y值隨m的增大而減小,函數y=-的y值隨m的增大而增大,當m=-2時y=m2+2=4+2=6,y=-=-=2,∵6>2,∴交點橫坐標大于-2,當m=-1時,y=m2+2=1+2=3,y=-=-=4,∵3<4,∴交點橫坐標小于-1,∴-2<m<-1.故選A.考點:1.二次函數的圖象;2.反比例函數的圖象.4、B【解析】

由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】∵a<0,∴拋物線的開口方向向下,故第三個選項錯誤;∵c<0,∴拋物線與y軸的交點為在y軸的負半軸上,故第一個選項錯誤;∵a<0、b>0,對稱軸為x=>0,∴對稱軸在y軸右側,故第四個選項錯誤.故選B.5、D【解析】解:∵AD為圓O的切線,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD與∠ACB都對,∴∠ACB=∠AOD=27°.故選D.6、D【解析】

設小王的行車時間為x分鐘,小張的行車時間為y分鐘,根據計價規則計算出小王的車費和小張的車費,建立方程求解.【詳解】設小王的行車時間為x分鐘,小張的行車時間為y分鐘,依題可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案為D.【點睛】本題考查列方程解應用題,讀懂表格中的計價規則是解題的關鍵.7、C【解析】解:由題意得:,∴,∴x=±1.故選C.8、C【解析】

根據三角形的內角和定理和三角形外角性質進行解答即可.【詳解】如圖:,,,,∴==,故選C.【點睛】本題考查了三角形內角和定理、三角形外角的性質、熟練掌握相關定理及性質以及一副三角板中各個角的度數是解題的關鍵.9、C【解析】分析:依據AB∥EF,即可得∠BDE=∠E=45°,再根據∠A=30°,可得∠B=60°,利用三角形外角性質,即可得到∠1=∠BDE+∠B=105°.詳解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故選C.點睛:本題主要考查了平行線的性質,解題時注意:兩直線平行,內錯角相等.10、B【解析】試題解析:由圖可知可以瞄準的點有2個..∴B球一次反彈后擊中A球的概率是.故選B.11、C【解析】

根據2013年我省財政收入和2014年我省財政收入比2013年增長8.9%,求出2014年我省財政收入,再根據出2015年比2014年增長9.5%,2015年我省財政收為b億元,即可得出a、b之間的關系式.【詳解】∵2013年我省財政收入為a億元,2014年我省財政收入比2013年增長8.9%,∴2014年我省財政收入為a(1+8.9%)億元,∵2015年比2014年增長9.5%,2015年我省財政收為b億元,∴2015年我省財政收為b=a(1+8.9%)(1+9.5%);故選C.【點睛】此題考查了列代數式,關鍵是根據題意求出2014年我省財政的收入,是一道基礎題.12、D【解析】

眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個;找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數.【詳解】數據36出現了10次,次數最多,所以眾數為36,一共有20個數據,位置處于中間的數是:36,36,所以中位數是(36+36)÷2=36.故選D.【點睛】考查中位數與眾數,掌握眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個;找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

利用圓錐的底面周長和母線長求得圓錐的側面積,然后再利用圓錐的面積的計算方法求得側面展開扇形的圓心角的度數即可【詳解】∵圓錐的底面圓的周長是,∴圓錐的側面扇形的弧長為cm,,解得:故答案為.【點睛】此題考查弧長的計算,解題關鍵在于求得圓錐的側面積14、【解析】

讓黃球的個數除以球的總個數即為所求的概率.【詳解】解:因為一共10個球,其中3個黃球,所以從袋中任意摸出2個球是黃球的概率是.

故答案為:.【點睛】本題考查了概率的基本計算,用到的知識點為:概率等于所求情況數與總情況數之比.15、b2【解析】該題考查因式分解的定義首先可以提取一個公共項b,所以a2b+2ab+b=b(a2+2a+1)再由完全平方公式(x1+x2)2=x12+x22+2x1x2所以a2b+2ab+b=b(a2+2a+1)=b216、1【解析】

∵BD是Rt△ABC斜邊上的中線,∴BD=CD=AD,∴∠DBC=∠ACB,又∠DBC=∠OBE,∠BOE=∠ABC=90°,∴△ABC∽△EOB,∴∴AB?OB=BC?OE,∵S△BEC=×BC?OE=8,∴AB?OB=1,∴k=xy=AB?OB=1.17、x≥﹣且x≠1【解析】

試題解析:根據題意得:解得:x≥﹣且x≠1.故答案為:x≥﹣且x≠1.18、1:3【解析】根據相似三角形的判定,由DE∥AC,可知△DOE∽△COA,△BDE∽△BCA,然后根據相似三角形的面積比等于相似比的平方,可由,求得DE:AC=1:4,即BE:BC=1:4,因此可得BE:EC=1:3,最后根據同高不同底的三角形的面積可知與的比是1:3.故答案為1:3.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)4【解析】分析:(1)欲證明AE是⊙O切線,只要證明OA⊥AE即可;(2)由△ACD∽△CFD,可得,想辦法求出CD、AD即可解決問題.詳解:(1)證明:連接CD.∵∠B=∠D,AD是直徑,∴∠ACD=90°,∠D+∠1=90°,∠B+∠1=90°,∵∠B=∠EAC,∴∠EAC+∠1=90°,∴OA⊥AE,∴AE是⊙O的切線.(2)∵CG⊥AD.OA⊥AE,∴CG∥AE,∴∠2=∠3,∵∠2=∠B,∴∠3=∠B,∵∠CAG=∠CAB,∴△ABC∽△ACG,∴,∴AC2=AG?AB=36,∴AC=6,∵tanD=tanB=,在Rt△ACD中,tanD==CD==6,AD==6,∵∠D=∠D,∠ACD=∠CFD=90°,∴△ACD∽△CFD,∴,∴DF=4,點睛:本題考查切線的性質、圓周角定理、垂徑定理、相似三角形的判定和性質、解直角三角形等知識,解題關鍵是靈活運用所學知識解決問題,屬于中考常考題型.20、(1)見解析;(2);(3).【解析】

(1)根據列樹狀圖的步驟和題意分析所有等可能的出現結果,即可畫出圖形;(2)根據(1)求出甲、乙兩位評委給出相同結論的情況數,再根據概率公式即可求出答案;(3)根據(1)即可求出琪琪進入復賽的概率.【詳解】(1)畫樹狀圖如下:(2)∵共有8種等可能結果,只有甲、乙兩位評委給出相同結論的有2種可能,∴只有甲、乙兩位評委給出相同結論的概率P=;(3)∵共有8種等可能結果,三位評委中至少有兩位給出“通過”結論的有4種可能,∴樂樂進入復賽的概率P=.【點睛】此題考查了列樹狀圖,掌握列樹狀圖的步驟,找出三位評委給出相同結論的情況數是本題的關鍵,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P=.21、(1)證明見解析(2)【解析】分析:(1)由已知條件易得BE=DF且BE∥DF,從而可得四邊BFDE是平行四邊形,結合∠EDB=90°即可得到四邊形BFDE是矩形;(2)由已知易得AB=5,由AF平分∠DAB,DC∥AB可得∠DAF=∠BAF=∠DFA,由此可得DF=AD=5,結合BE=DF可得BE=5,由此可得AB=8,結合BF=DE=4即可求得tan∠BAF=.詳解:(1)∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵AE=CF,∴BE=DF,∴四邊形BFDE是平行四邊形.∵DE⊥AB,∴∠DEB=90°,∴四邊形BFDE是矩形;(2)在Rt△BCF中,由勾股定理,得AD=,∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠DFA=∠FAB.∵AF平分∠DAB∴∠DAF=∠FAB,∴∠DAF=∠DFA,∴DF=AD=5,∵四邊形BFDE是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴tan∠BAF=.點睛:(1)熟悉平行四邊形的性質和矩形的判定方法是解答第1小題的關鍵;(2)能由AF平分∠DAB,DC∥AB得到∠DAF=∠BAF=∠DFA,進而推得DF=AD=5是解答第2小題的關鍵.22、塔CD的高度為37.9米【解析】試題分析:首先分析圖形,根據題意構造直角三角形.本題涉及兩個直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分別計算,可得到一個關于AC的方程,從而求出DC.試題解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.則有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度為(8+24)米≈37.9米,答:塔CD的高度為37.9米.23、:(1)30o;(2).【解析】分析:(1)由已知條件易得∠ABC=∠A=60°,結合BD平分∠ABC和CD∥AB即可求得∠CDB=30°;(2)過點D作DH⊥AB于點H,則∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,結合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,AH=,這樣即可由梯形的面積公式求出梯形ABCD的面積了.詳解:(1)∵在梯形ABCD中,DC∥AB,AD=BC,∠A=60°,∴∠CBA=∠A=60o,∵BD平分∠ABC,∴∠CDB=∠ABD=∠CBA=30o,(2)在△ACD中,∵∠ADB=180o–∠A–∠ABD=90o.∴BD=ADA=2tan60o=2.過點D作DH⊥AB,垂足為H,∴AH=ADA=2sin60o=.∵∠CDB=∠CBD=∠CBD=30o,∴DC=BC=AD=2∵AB=2AD=4∴.點睛:本題是一道應用等腰梯形的性質求解的題,熟悉等腰梯形的性質和直角三角形中30°的角所對直角邊是斜邊的一半及等腰三角形的判定,是正確解答本題的關鍵.24、(1)證明見解析;(2)從運動開始經過2s或s或s或s時,△BEP為等腰三角形.【解析】

(1)根據內錯角相等,得到兩邊平行,然后再根據三角形內角和等于180度得到另一對內錯角相等,從而證得原四邊形是平行四邊形;(2)分別考慮P在BC和DA上的情況求出t的值.【詳解】解:(1)∵∠BAC=∠ACD=90°,∴AB∥CD,∵∠B=∠D,∠B+∠BAC+∠ACB=∠D+∠ACD+∠DAC=180°,∴∠DAC=∠ACB,∴AD∥BC,∴四邊形ABCD是平行四邊形.(2)∵∠BAC=90°,BC=5cm,AB=3cm,′由勾股定理得:AC=4cm,即AB、CD間的最短距離是4cm,∵AB=3cm,AE=AB,∴AE=1cm,BE=2cm,設經過ts時,△BEP是等腰三角形,當P在BC上時,①BP=EB=2cm,t=2時,△BEP是等腰三角形;②BP=PE,作PM⊥AB于M,∴BM=ME=BE=1cm∵cos∠ABC=,∴BP=cm,t=時,△BEP是等腰三角形;③BE=PE=2cm,作EN⊥BC于N,則BP=2BN,∴cosB=,∴,BN=cm,∴BP=,∴t=時,△BEP是等腰三角形;當P在CD上不能得出等腰三角形,∵AB、CD間的最短距離是4cm,CA⊥AB,CA=4cm,當P在AD上時,只能BE=EP=2cm,過P作PQ⊥BA于Q,∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠QAD=∠ABC,∵∠BAC=∠Q=90°,∴△QAP∽△ABC,∴PQ:AQ:AP=4:3:5,設PQ=4xcm,AQ=3xcm,在△EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,∴x=,AP=5x=cm,∴t=5+5+3﹣=,答:從運動開始經過2s或s或s或s時,△BEP為等腰三角形.【點睛】本題主要考查平行四邊形的判定定理及一元二次方程的解法,要求學生能夠熟練利用邊角關系解三角形.25、(1)w=-10x2+700x-10000;(2)即銷售單價為35元時,該文具每天的銷售利潤最大;(3)A方案利潤更高.【解析】

試題分析:(1)根據利潤=(單價-進價)×銷售量,列出函數關系式即可.(2)根據(1)式列出的函數關系式,運用配方法求最大值.(3)分別求出方案A、B中x的取值范圍,然后分別求出A、B方案的最大利潤,然后進行比較.【詳解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴當x=35時,w有最大值2250,即銷售單價為35元時,該文具每天的銷售利潤最大.(3)A方案利潤高,理由如下:A方案中:20<x≤30,函數w=-10(x-35)2+2250隨x的增大而增大,∴當x=30時,w有最大值,此時,最大值為2000元.B方案中:,解得x的取值范圍為:45≤x≤4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論