



版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023學年安徽省合肥市巢湖第三中學中考聯考數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、測試卷卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,是直角三角形,,,點在反比例函數的圖象上.若點在反比例函數的圖象上,則的值為()A.2 B.-2 C.4 D.-42.如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,則圖中相似三角形共有()A.1對 B.2對 C.3對 D.4對3.計算3a2-a2的結果是()A.4a2B.3a2C.2a2D.34.計算﹣的結果為()A. B. C. D.5.下列運算正確的是()A.a6÷a3=a2 B.3a2?2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=16.如圖,已知垂直于的平分線于點,交于點,,若的面積為1,則的面積是()A. B. C. D.7.《九章算術》是我國古代內容極為豐富的數學名著.書中有下列問題“今有勾八步,股十五步,問勾中容圓徑幾何?”其意思是“今有直角三角形(如圖),勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形能容納的圓形(內切圓)直徑是多少?”()A.3步 B.5步 C.6步 D.8步8.將一把直尺與一塊直角三角板如圖放置,如果,那么的度數為().A. B. C. D.9.如圖,點C、D是線段AB上的兩點,點D是線段AC的中點.若AB=10cm,BC=4cm,則線段DB的長等于()A.2cm B.3cm C.6cm D.7cm10.如圖,等腰△ABC中,AB=AC=10,BC=6,直線MN垂直平分AB交AC于D,連接BD,則△BCD的周長等于()A.13 B.14 C.15 D.16二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在每個小正方形的邊長為1的網格中,點A,B,C,D均在格點上,AB與CD相交于點E.(1)AB的長等于_____;(2)點F是線段DE的中點,在線段BF上有一點P,滿足,請在如圖所示的網格中,用無刻度的直尺,畫出點P,并簡要說明點P的位置是如何找到的(不要求證明)_____.12.如果a+b=2,那么代數式(a﹣)÷的值是______.13.如圖,點A,B,C在⊙O上,∠OBC=18°,則∠A=_______________________.14.一個等腰三角形的兩邊長分別為4cm和9cm,則它的周長為__cm.15.請看楊輝三角(1),并觀察下列等式(2):根據前面各式的規律,則(a+b)6=.16.已知反比例函數,在其圖象所在的每個象限內,的值隨的值增大而減小,那么它的圖象所在的象限是第__________象限.17.解不等式組請結合題意填空,完成本題的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在數軸上表示出來:(Ⅳ)原不等式組的解集為.三、解答題(共7小題,滿分69分)18.(10分)(1)計算:(﹣2)2﹣+(+1)2﹣4cos60°;(2)化簡:÷(1﹣)19.(5分)如圖,在直角三角形ABC中,(1)過點A作AB的垂線與∠B的平分線相交于點D(要求:尺規作圖,保留作圖痕跡,不寫作法);(2)若∠A=30°,AB=2,則△ABD的面積為.20.(8分)已知:△ABC在坐標平面內,三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網格中,每個小正方形的邊長是1個單位長度)畫出△ABC向下平移4個單位得到的△A1B1C1,并直接寫出C1點的坐標;以點B為位似中心,在網格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比為2︰1,并直接寫出C2點的坐標及△A2BC2的面積.21.(10分)(問題發現)(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,FE,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉中心將正方形ABCD旋轉60°,得到正方形AB'C'D',請直接寫出BD'平方的值.22.(10分)如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉90°得線段PQ.(1)當點Q落到AD上時,∠PAB=____°,PA=_____,長為_____;(2)當AP⊥BD時,記此時點P為P0,點Q為Q0,移動點P的位置,求∠QQ0D的大小;(3)在點P運動中,當以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;(4)點P在線段BD上,由B向D運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結果.23.(12分)先化簡,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.24.(14分)如圖,在△ABC中,D、E分別是邊AB、AC上的點,DE∥BC,點F在線段DE上,過點F作FG∥AB、FH∥AC分別交BC于點G、H,如果BG:GH:HC=2:4:1.求的值.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【答案解析】
要求函數的解析式只要求出點的坐標就可以,過點、作軸,軸,分別于、,根據條件得到,得到:,然后用待定系數法即可.【題目詳解】過點、作軸,軸,分別于、,設點的坐標是,則,,,,,,,,,,,,因為點在反比例函數的圖象上,則,點在反比例函數的圖象上,點的坐標是,.故選:.【答案點睛】本題考查了反比例函數圖象上點的坐標特征,相似三角形的判定與性質,求函數的解析式的問題,一般要轉化為求點的坐標的問題,求出圖象上點的橫縱坐標的積就可以求出反比例函數的解析式.2、C【答案解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三對相似三角形.故選C.3、C【答案解析】【分析】根據合并同類項法則進行計算即可得.【題目詳解】3a2-a2=(3-1)a2=2a2,故選C.【答案點睛】本題考查了合并同類項,熟記合并同類項的法則是解題的關鍵.合并同類項就是把同類項的系數相加減,字母和字母的指數不變.4、A【答案解析】
根據分式的運算法則即可【題目詳解】解:原式=,故選A.【答案點睛】本題主要考查分式的運算。5、B【答案解析】
A、根據同底數冪的除法法則計算;
B、根據同底數冪的乘法法則計算;
C、根據積的乘方法則進行計算;
D、根據合并同類項法則進行計算.【題目詳解】解:A、a6÷a3=a3,故原題錯誤;B、3a2?2a=6a3,故原題正確;C、(3a)2=9a2,故原題錯誤;D、2x2﹣x2=x2,故原題錯誤;故選B.【答案點睛】考查同底數冪的除法,合并同類項,同底數冪的乘法,積的乘方,熟記它們的運算法則是解題的關鍵.6、B【答案解析】
先證明△ABD≌△EBD,從而可得AD=DE,然后先求得△AEC的面積,繼而可得到△CDE的面積.【題目詳解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面積為1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故選B.【答案點睛】本題考查了全等三角形的判定,掌握等高的兩個三角形的面積之比等于底邊長度之比是解題的關鍵.7、C【答案解析】測試卷解析:根據勾股定理得:斜邊為則該直角三角形能容納的圓形(內切圓)半徑(步),即直徑為6步,故選C8、D【答案解析】
根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠1,再根據兩直線平行,同位角相等可得∠2=∠1.【題目詳解】如圖,由三角形的外角性質得:∠1=90°+∠1=90°+58°=148°.∵直尺的兩邊互相平行,∴∠2=∠1=148°.故選D.【答案點睛】本題考查了平行線的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質是解題的關鍵.9、D【答案解析】【分析】先求AC,再根據點D是線段AC的中點,求出CD,再求BD.【題目詳解】因為,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因為,點D是線段AC的中點,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故選D【答案點睛】本題考核知識點:線段的中點,和差.解題關鍵點:利用線段的中點求出線段長度.10、D【答案解析】
由AB的垂直平分MN交AC于D,根據線段垂直平分線的性質,即可求得AD=BD,又由△CDB的周長為:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【題目詳解】解:∵MN是線段AB的垂直平分線,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周長=AC+BC=10+6=16,故選D.【答案點睛】此題考查了線段垂直平分線的性質,比較簡單,注意數形結合思想與轉化思想的應用.二、填空題(共7小題,每小題3分,滿分21分)11、見圖形【答案解析】分析:(Ⅰ)利用勾股定理計算即可;(Ⅱ)連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F,因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K,因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3;詳解:(Ⅰ)AB的長==;(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1.取格點G、H,連接GH交DE于F.∵DG∥CH,∴FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.∵BI∥DJ,∴BK:DK=BI:DJ=5:2.連接EK交BF于P,可證BP:PF=5:3.故答案為(Ⅰ);(Ⅱ)由題意:連接AC、BD.易知:AC∥BD,可得:EC:ED=AC:BD=3:1,取格點G、H,連接GH交DE于F.因為DG∥CH,所以FD:FC=DG:CH=5:8,可得DF=EF.取格點I、J,連接IJ交BD于K.因為BI∥DJ,所以BK:DK=BI:DJ=5:2,連接EK交BF于P,可證BP:PF=5:3.點睛:本題考查了作圖﹣應用與設計,平行線分線段成比例定理等知識,解題的關鍵是靈活運用所學知識解決問題,所以中考常考題型.12、2【答案解析】分析:根據分式的運算法則即可求出答案.詳解:當a+b=2時,原式===a+b=2故答案為:2點睛:本題考查分式的運算,解題的關鍵熟練運用分式的運算法則,本題屬于基礎題型.13、72°.【答案解析】
解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=∠BOC=×144°=72°.故答案為72°.【答案點睛】本題考查圓周角定理,掌握同弧所對的圓周角是圓心角的一半是本題的解題關鍵.14、1【答案解析】
底邊可能是4,也可能是9,分類討論,去掉不合條件的,然后可求周長.【題目詳解】測試卷解析:①當腰是4cm,底邊是9cm時:不滿足三角形的三邊關系,因此舍去.②當底邊是4cm,腰長是9cm時,能構成三角形,則其周長=4+9+9=1cm.故填1.【答案點睛】本題考查了等腰三角形的性質和三角形的三邊關系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答.15、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.【答案解析】
通過觀察可以看出(a+b)2的展開式為2次7項式,a的次數按降冪排列,b的次數按升冪排列,各項系數分別為2、2、25、20、25、2、2.【題目詳解】通過觀察可以看出(a+b)2的展開式為2次7項式,a的次數按降冪排列,b的次數按升冪排列,各項系數分別為2、2、25、20、25、2、2.所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.16、【答案解析】
直接利用反比例函數的增減性進而得出圖象的分布.【題目詳解】∵反比例函數y(k≠0),在其圖象所在的每個象限內,y的值隨x的值增大而減小,∴它的圖象所在的象限是第一、三象限.故答案為:一、三.【答案點睛】本題考查了反比例的性質,正確掌握反比例函數圖象的分布規律是解題的關鍵.17、詳見解析.【答案解析】
先根據不等式的性質求出每個不等式的解集,再在數軸上表示出來,根據數軸找出不等式組公共部分即可.【題目詳解】(Ⅰ)解不等式①,得:x<1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在數軸上表示出來:(Ⅳ)原不等式組的解集為:﹣1≤x<1,故答案為:x<1、x≥﹣1、﹣1≤x<1.【答案點睛】本題考查了解一元一次不等式組的概念.三、解答題(共7小題,滿分69分)18、(1)5(2)【答案解析】
(1)根據實數的運算法則進行計算,要記住特殊銳角三角函數值;(2)根據分式的混合運算法則進行計算.【題目詳解】解:(1)原式=4﹣2+2+2+1﹣4×=7﹣2=5;(2)原式=÷=?=.【答案點睛】本題考核知識點:實數運算,分式混合運算.解題關鍵點:掌握相關運算法則.19、(1)見解析(2)【答案解析】
(1)分別作∠ABC的平分線和過點A作AB的垂線,它們的交點為D點;(2)利用角平分線定義得到∠ABD=30°,利用含30度的直角三角形三邊的關系得到AD=AB=,然后利用三角形面積公式求解.【題目詳解】解:(1)如圖,點D為所作;(2)∵∠CAB=30°,∴∠ABC=60°.∵BD為角平分線,∴∠ABD=30°.∵DA⊥AB,∴∠DAB=90°.在Rt△ABD中,AD=AB=,∴△ABD的面積=×2×=.故答案為.【答案點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了三角形面積公式.20、解:(1)如圖,△A1B1C1即為所求,C1(2,-2).(2)如圖,△A2BC2即為所求,C2(1,0),△A2BC2的面積:10【答案解析】
分析:(1)根據網格結構,找出點A、B、C向下平移4個單位的對應點、、的位置,然后順次連接即可,再根據平面直角坐標系寫出點的坐標;(2)延長BA到使A=AB,延長BC到,使C=BC,然后連接A2C2即可,再根據平面直角坐標系寫出點的坐標,利用△B所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.本題解析:(1)如圖,△A1B1C1即為所求,C1(2,-2)(2)如圖,△B為所求,(1,0),△B的面積:6×4?×2×6?×2×4?×2×4=24?6?4?4=24?14=10,21、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【答案解析】
(1)依據點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點A為旋轉中心將正方形ABCD逆時針旋轉60°,②以點A為旋轉中心將正方形ABCD順時針旋轉60°,分別依據旋轉的性質以及勾股定理,即可得到結論.【題目詳解】(1)∵AB=AD,CB=CD,∴點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點F為斜邊BC的中點,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點A為旋轉中心將正方形ABCD逆時針旋轉60°,如圖所示:過D'作D'E⊥AB,交BA的延長線于E,由旋轉可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點A為旋轉中心將正方形ABCD順時針旋轉60°,如圖所示:過B作BF⊥AD'于F,旋轉可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8綜上所述,BD′平方的長度為16+8或16﹣8.【答案點睛】本題屬于四邊形綜合題,主要考查了正方形的性質,矩形的判定,旋轉的性質,線段垂直平分線的性質以及勾股定理的綜合運用,解決問題的關鍵是作輔助線構造直角三角形,依據勾股定理進行計算求解.解題時注意:有三個角是直角的四邊形是矩形.22、(1)45,,π;(2)滿足條件的∠QQ0D為45°或135°;(3)BP的長為或;(4)≤CQ≤7.【答案解析】
(1)由已知,可知△APQ為等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的長度;(2)分點Q在BD上方和下方的情況討論求解即可.(3)分別討論點Q在BD上方和下方的情況,利用切線性質,在由(2)用BP0表示BP,由射影定理計算即可;(4)由(2)可知,點Q在過點Qo,且與BD夾角為45°的線段EF上運動,有圖形可知,當點Q運動到點E時,CQ最長為7,再由垂線段最短,應用面積法求CQ最小值.【題目詳解】解:(1)如圖,過點P做PE⊥AD于點E由已知,AP=PQ,∠APQ=90°∴△APQ為等腰直角三角形∴∠PAQ=∠PAB=45°設PE=x,則AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的長為?2π?=π.故答案為45,,π.(2)如圖,過點Q做QF⊥BD于點F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.當點Q在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 初中數學冪的乘除-冪的乘方教學設計+2024-2025學年北師大版數學七年級下冊
- 2025教育設備采購合同模板
- 貿促會專區農產品進口合同
- 會議室租憑協議
- 企業培訓計劃合同
- 2025葡萄酒銷售合同范本
- 《課件:商業計劃書詳解》
- 2025年外加工電子產品合同范本
- 2025建筑施工承包合同模板
- 2025瑞豐企業合同(項目管理咨詢)
- 廣東省2024-2025學年佛山市普通高中教學質量檢測物理試卷及答案(二)高三試卷(佛山二模)
- 【9數一模】2025年安徽合肥市第四十五中學九年級中考一模數學試卷(含答案)
- 2024年安徽馬鞍山技師學院專任教師招聘真題
- 電網工程設備材料信息參考價(2024年第四季度)
- DB42T2305-2024高品質住宅技術標準
- 2024年浙江省中考社會試卷真題(含標準答案及評分標準)
- 2023年(第九屆)全國大學生統計建模大賽 論文模板及說明
- 北師大版數學六年級下冊-總復習課件(精編版)
- 經濟效益證明(模板)
- 汽車總裝車輛返工返修作業標準管理辦法
- D建筑消防設施故障維修記錄表
評論
0/150
提交評論