2021-2022學年重慶市巴南區全善學校中考五模數學試題含解析_第1頁
2021-2022學年重慶市巴南區全善學校中考五模數學試題含解析_第2頁
2021-2022學年重慶市巴南區全善學校中考五模數學試題含解析_第3頁
2021-2022學年重慶市巴南區全善學校中考五模數學試題含解析_第4頁
2021-2022學年重慶市巴南區全善學校中考五模數學試題含解析_第5頁
免費預覽已結束,剩余18頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A.a2?a3=a6 B.(a2)3=a6 C.a6﹣a2=a4 D.a5+a5=a102.如圖1,在△ABC中,D、E分別是AB、AC的中點,將△ADE沿線段DE向下折疊,得到圖1.下列關于圖1的四個結論中,不一定成立的是()A.點A落在BC邊的中點 B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC3.某運動會頒獎臺如圖所示,它的主視圖是()A. B. C. D.4.已知二次函數y=﹣(x﹣h)2+1(為常數),在自變量x的值滿足1≤x≤3的情況下,與其對應的函數值y的最大值為﹣5,則h的值為()A.3﹣或1+ B.3﹣或3+C.3+或1﹣ D.1﹣或1+5.二元一次方程組的解是()A. B. C. D.6.在一個不透明的盒子里有2個紅球和n個白球,這些球除顏色外其余完全相同,搖勻后隨機摸出一個,摸到紅球的概率是,則n的值為()A.10 B.8 C.5 D.37.用配方法解方程時,可將方程變形為()A. B. C. D.8.計算1+2+22+23+…+22010的結果是()A.22011–1 B.22011+1C. D.9.某工廠現在平均每天比原計劃多生產50臺機器,現在生產600臺所需時間與原計劃生產450臺機器所需時間相同.設原計劃平均每天生產x臺機器,根據題意,下面所列方程正確的是()A.= B.=C.= D.=10.方程x2﹣3x+2=0的解是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2 D.x1=﹣1,x2=2二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P,O兩點的二次函數y1和過P,A兩點的二次函數y2的圖象開口均向下,它們的頂點分別為B,C,射線OB與射線AC相交于點D.當△ODA是等邊三角形時,這兩個二次函數的最大值之和等于__.12.對于任意實數m、n,定義一種運算m※n=mn﹣m﹣n+3,等式的右邊是通常的加減和乘法運算,例如:3※5=3×5﹣3﹣5+3=1.請根據上述定義解決問題:若a<2※x<7,且解集中有兩個整數解,則a的取值范圍是_____.13.如圖所示,過y軸正半軸上的任意一點P,作x軸的平行線,分別與反比例函數的圖象交于點A和點B,若點C是x軸上任意一點,連接AC、BC,則△ABC的面積為_________.14.已知扇形的圓心角為120°,弧長為6π,則扇形的面積是_____.15.若直角三角形兩邊分別為6和8,則它內切圓的半徑為_____.16.如圖,以長為18的線段AB為直徑的⊙O交△ABC的邊BC于點D,點E在AC上,直線DE與⊙O相切于點D.已知∠CDE=20°,則的長為_____.17.已知x1,x2是方程x2-3x-1=0的兩根,則=______.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,AB為⊙O的直徑,C是BA延長線上一點,CP切⊙O于P,弦PD⊥AB于E,過點B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點,∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數;(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點M,求QM的長.19.(5分)校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載,某中學數學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂直,測得CD的長等于24米,在l上點D的同側取點A、B,使∠CAD=30°,∠CBD=60°.求AB的長(結果保留根號);已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時1.5秒,這輛校車是否超速?說明理由.(參考數據:≈1.7,≈1.4)20.(8分)如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.21.(10分)如圖,在正方形ABCD的外側,作兩個等邊三角形ABE和ADF,連結ED與FC交于點M,則圖中≌,可知,求得______.如圖,在矩形的外側,作兩個等邊三角形ABE和ADF,連結ED與FC交于點M.求證:.若,求的度數.22.(10分)如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直于x軸,垂足為點B,反比例函數y=(x>0)的圖象經過AO的中點C,交AB于點D,且AD=1.設點A的坐標為(4,4)則點C的坐標為;若點D的坐標為(4,n).①求反比例函數y=的表達式;②求經過C,D兩點的直線所對應的函數解析式;在(2)的條件下,設點E是線段CD上的動點(不與點C,D重合),過點E且平行y軸的直線l與反比例函數的圖象交于點F,求△OEF面積的最大值.23.(12分)邊長為6的等邊△ABC中,點D,E分別在AC,BC邊上,DE∥AB,EC=2如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點為M,邊C′D′與∠ACC′的角平分線交于點N.當CC′多大時,四邊形MCND′為菱形?并說明理由.如圖2,將△DEC繞點C旋轉∠α(0°<α<360°),得到△D′E′C,連接AD′,BE′.邊D′E′的中點為P.①在旋轉過程中,AD′和BE′有怎樣的數量關系?并說明理由;②連接AP,當AP最大時,求AD′的值.(結果保留根號)24.(14分)先化簡,再求值:,其中a為不等式組的整數解.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據同底數冪乘法、冪的乘方的運算性質計算后利用排除法求解.【詳解】A、a2?a3=a5,錯誤;B、(a2)3=a6,正確;C、不是同類項,不能合并,錯誤;D、a5+a5=2a5,錯誤;故選B.【點睛】本題綜合考查了整式運算的多個考點,包括同底數冪的乘法、冪的乘方、合并同類項,需熟練掌握且區分清楚,才不容易出錯.2、A【解析】

根據折疊的性質明確對應關系,易得∠A=∠1,DE是△ABC的中位線,所以易得B、D答案正確,D是AB中點,所以DB=DA,故C正確.【詳解】根據題意可知DE是三角形ABC的中位線,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A錯,BA≠CA.故選A.【點睛】主要考查了三角形的內角和外角之間的關系以及等腰三角形的性質.還涉及到翻折變換以及中位線定理的運用.(1)三角形的外角等于與它不相鄰的兩個內角和.(1)三角形的內角和是180度.求角的度數常常要用到“三角形的內角和是180°這一隱含的條件.通過折疊變換考查正多邊形的有關知識,及學生的邏輯思維能力.解答此類題最好動手操作.3、C【解析】

從正面看到的圖形如圖所示:,故選C.4、C【解析】

∵當x<h時,y隨x的增大而增大,當x>h時,y隨x的增大而減小,∴①若h<1≤x≤3,x=1時,y取得最大值-5,可得:-(1-h)2+1=-5,解得:h=1-或h=1+(舍);②若1≤x≤3<h,當x=3時,y取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+或h=3-(舍).綜上,h的值為1-或3+,故選C.點睛:本題主要考查二次函數的性質和最值,根據二次函數的增減性和最值分兩種情況討論是解題的關鍵.5、B【解析】

利用加減消元法解二元一次方程組即可得出答案【詳解】解:①﹣②得到y=2,把y=2代入①得到x=4,∴,故選:B.【點睛】此題考查了解二元一次方程組,解方程組利用了消元的思想,消元的方法有:代入消元法與加減消元法.6、B【解析】∵摸到紅球的概率為,∴,解得n=8,故選B.7、D【解析】

配方法一般步驟:將常數項移到等號右側,左右兩邊同時加一次項系數一半的平方,配方即可.【詳解】解:故選D.【點睛】本題考查了配方法解方程的步驟,屬于簡單題,熟悉步驟是解題關鍵.8、A【解析】

可設其和為S,則2S=2+22+23+24+…+22010+22011,兩式相減可得答案.【詳解】設S=1+2+22+23+…+22010①則2S=2+22+23+…+22010+22011②②-①得S=22011-1.故選A.【點睛】本題考查了因式分解的應用;設出和為S,并求出2S進行做差求解是解題關鍵.9、B【解析】

設原計劃平均每天生產x臺機器,則實際平均每天生產(x+50)臺機器,根據題意可得:現在生產600臺所需時間與原計劃生產450臺機器所需時間相同,據此列方程即可.【詳解】設原計劃平均每天生產x臺機器,則實際平均每天生產(x+50)臺機器,由題意得:.故選B.【點睛】本題考查了由實際問題抽象出分式方程,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系,列方程.10、A【解析】

將方程左邊的多項式利用十字相乘法分解因式,然后利用兩數相乘積為0,兩因式中至少有一個為0轉化為兩個一元一次方程,求出一次方程的解即可得到原方程的解.【詳解】解:原方程可化為:(x﹣1)(x﹣1)=0,∴x1=1,x1=1.故選:A.【點睛】此題考查了解一元二次方程-因式分解法,利用此方法解方程時首先將方程右邊化為0,左邊的多項式分解因式化為積的形式,然后利用兩數相乘積為0,兩因式中至少有一個為0轉化為兩個一元一次方程來求解.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】

連接PB、PC,根據二次函數的對稱性可知OB=PB,PC=AC,從而判斷出△POB和△ACP是等邊三角形,再根據等邊三角形的性質求解即可.【詳解】解:如圖,連接PB、PC,由二次函數的性質,OB=PB,PC=AC,∵△ODA是等邊三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等邊三角形,∵A(4,0),∴OA=4,∴點B、C的縱坐標之和為:OB×sin60°+PC×sin60°=4×=2,即兩個二次函數的最大值之和等于2.故答案為2.【點睛】本題考查了二次函數的最值問題,等邊三角形的判定與性質,解直角三角形,作輔助線構造出等邊三角形并利用等邊三角形的知識求解是解題的關鍵.12、【解析】

解:根據題意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有兩個整數解,∴a的范圍為,故答案為.【點睛】本題考查一元一次不等式組的整數解,準確理解題意正確計算是本題的解題關鍵.13、1.【解析】

設P(0,b),∵直線APB∥x軸,∴A,B兩點的縱坐標都為b,而點A在反比例函數y=的圖象上,∴當y=b,x=-,即A點坐標為(-,b),又∵點B在反比例函數y=的圖象上,∴當y=b,x=,即B點坐標為(,b),∴AB=-(-)=,∴S△ABC=?AB?OP=??b=1.14、27π【解析】試題分析:設扇形的半徑為r.則,解得r=9,∴扇形的面積==27π.故答案為27π.考點:扇形面積的計算.15、2或-1【解析】

根據已知題意,求第三邊的長必須分類討論,即8是斜邊或直角邊的兩種情況,然后利用勾股定理求出另一邊的長,再根據內切圓半徑公式求解即可.【詳解】若8是直角邊,則該三角形的斜邊的長為:,∴內切圓的半徑為:;若8是斜邊,則該三角形的另一條直角邊的長為:,∴內切圓的半徑為:.故答案為2或-1.【點睛】本題考查了勾股定理,三角形的內切圓,以及分類討論的數學思想,分類討論是解答本題的關鍵.16、7π【解析】

連接OD,由切線的性質和已知條件可求出∠AOD的度數,再根據弧長公式即可求出的長.【詳解】連接OD,∵直線DE與⊙O相切于點D,∴∠EDO=90°,∵∠CDE=20°,∴∠ODB=180°-90°-20°=70°,∵OD=OB,∴∠ODB=∠OBD=70°,∴∠AOD=140°,∴的長==7π,故答案為:7π.【點睛】本題考查了切線的性質、等腰三角形的判斷和性質以及弧長公式的運用,求出∠AOD的度數是解題的關鍵.17、﹣1.【解析】試題解析:∵,是方程的兩根,∴、,∴===﹣1.故答案為﹣1.三、解答題(共7小題,滿分69分)18、(1)證明見解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結合BQ⊥CP于點Q,PE⊥AB于點E即可由角平分線的性質得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;(3)如下圖3,連接BG,過點O作OK⊥HB于點K,結合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過點G作GN⊥QB交QB的延長線于點N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長了.試題解析:(1)如下圖1,連接OP,PB,∵CP切⊙O于P,∴OP⊥CP于點P,又∵BQ⊥CP于點Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于點E,∴PQ=PE;(2)如下圖2,連接,∵CP切⊙O于P,∴∴∵PD⊥AB∴∴∴在Rt中,∠GAB=30°∴設EF=x,則在Rt中,tan∠BFE=3∴∴∴∴∴在RtPEO中,∴30°;(3)如下圖3,連接BG,過點O作于K,又BQ⊥CP,∴,∴四邊形POKQ為矩形,∴QK=PO,OK//CQ,∴30°,∵⊙O中PD⊥AB于E,PD=6,AB為⊙O的直徑,∴PE=PD=3,根據(2)得,在RtEPO中,,∴,∴OB=QK=PO=6,∴在Rt中,,∴,∴QB=9,在△ABG中,AB為⊙O的直徑,∴AGB=90°,∵BAG=30°,∴BG=6,ABG=60°,過點G作GN⊥QB交QB的延長線于點N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,∴QN=QB+BN=12,∴在Rt△QGN中,QG=,∵∠ABG=∠CBQ=60°,∴BM是△BQG的角平分線,∴QM:GM=QB:GB=9:6,∴QM=.點睛:解本題第3小題的要點是:(1)作出如圖所示的輔助線,結合已知條件和(2)先求得BQ、BG的長及∠CBQ=∠ABG=60°;(2)再過點G作GN⊥QB并交QB的延長線于點N,解出BN和GN的長,這樣即可在Rt△QGN中求得QG的長,最后在△BQG中“由角平分線分線段成比例定理”即可列出比例式求得QM的長了.19、(1);(2)此校車在AB路段超速,理由見解析.【解析】

(1)結合三角函數的計算公式,列出等式,分別計算AD和BD的長度,計算結果,即可.(2)在第一問的基礎上,結合時間關系,計算速度,判斷,即可.【詳解】解:(1)由題意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽車從A到B用時1.5秒,所以速度為16÷1.5≈18.1(米/秒),因為18.1(米/秒)=65.2千米/時>45千米/時,所以此校車在AB路段超速.【點睛】考查三角函數計算公式,考查速度計算方法,關鍵利用正切值計算方法,計算結果,難度中等.20、(1)見解析;(2)2π.【解析】

證明:(1)連接OD,∵AB是直徑,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD過O,∴EF是⊙O的切線.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴的長度=.【點睛】本題考查了切線的判定和性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了弧長公式.21、閱讀發現:90°;(1)證明見解析;(2)100°【解析】

閱讀發現:只要證明,即可證明.拓展應用:欲證明,只要證明≌即可.根據即可計算.【詳解】解:如圖中,四邊形ABCD是正方形,,,≌,,,,,,,故答案為為等邊三角形,,.為等邊三角形,,.四邊形ABCD為矩形,,..,,.在和中,,≌.;≌,,.【點睛】本題考查全等三角形的判定和性質、正方形的性質、矩形的性質等知識,解題的關鍵是正確尋找全等三角形,利用全等三角形的尋找解決問題,屬于中考常考題型.22、(1)C(2,2);(2)①反比例函數解析式為y=;②直線CD的解析式為y=﹣x+1;(1)m=1時,S△OEF最大,最大值為.【解析】

(1)利用中點坐標公式即可得出結論;

(2)①先確定出點A坐標,進而得出點C坐標,將點C,D坐標代入反比例函數中即可得出結論;

②由n=1,求出點C,D坐標,利用待定系數法即可得出結論;

(1)設出點E坐標,進而表示出點F坐標,即可建立面積與m的函數關系式即可得出結論.【詳解】(1)∵點C是OA的中點,A(4,4),O(0,0),∴C,∴C(2,2);故答案為(2,2);(2)①∵AD=1,D(4,n),∴A(4,n+1),∵點C是OA的中點,∴C(2,),∵點C,D(4,n)在雙曲線上,∴,∴,∴反比例函數解析式為;②由①知,n=1,∴C(2,2),D(4,1),設直線CD的解析式為y=ax+b,∴,∴,∴直線CD的解析式為y=﹣x+1;(1)如圖,由(2)知,直線CD的解析式為y=﹣x+1,設點E(m,﹣m+1),由(2)知,C(2,2),D(4,1),∴2<m<4,∵EF∥y軸交雙曲線于F,∴F(m,),∴EF=﹣m+1﹣,∴S△OEF=(﹣m+1﹣)×m=(﹣m2+1m﹣4)=﹣(m﹣1)2+,∵2<m<4,∴m=1時,S△OEF最大,最大值為【點睛】此題是反比例函數綜合題,主要考查了待定系數法,線段的中點坐標公式,解本題的關鍵是建立S△OEF與m的函數關系式.23、(1)當CC'=時,四邊形MCND'是菱形,理由見解析;(2)①AD'=BE',理由見解析;②.【解析】

(1)先判斷出四邊形MCND'為平行四邊形,再由菱形的性質得出CN=CM,即可求出C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論