小升初數(shù)學(xué)銜接班講義30課時_第1頁
小升初數(shù)學(xué)銜接班講義30課時_第2頁
小升初數(shù)學(xué)銜接班講義30課時_第3頁
小升初數(shù)學(xué)銜接班講義30課時_第4頁
小升初數(shù)學(xué)銜接班講義30課時_第5頁
已閱讀5頁,還剩57頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

小升初數(shù)學(xué)連接班講義30課時小升初數(shù)學(xué)連接班講義30課時PAGE62/62PAGE62小升初數(shù)學(xué)連接班講義30課時PAGE

小升初連接班講義

數(shù)學(xué)

序言

姓名:_____________第1課正數(shù)和負數(shù)

知識網(wǎng)絡(luò)

1、大于0的數(shù)是正數(shù)。

2、在正數(shù)前面添上符號“﹣〞〔負〕的數(shù)叫負數(shù)。

3、認識正號“+〞,認識負號“-〞,0既不是正數(shù),也不是負數(shù)。

4、假如一個問題中出現(xiàn)相反意義的量,我們能夠用正數(shù)和負數(shù)分別表示它們。

例題優(yōu)選

1〕一個月內(nèi),小明體重增添2KG,小華體重減少1KG,小強體重?zé)o變化,寫出他們這個月的體重增添值哪對反義詞表表示義相反的量

2〕某年,以下國家的商品出入口總數(shù)比上年的變化狀況是:

美國減少%德國增添%

法國減少%英國減少%

意大利增添%中國增添%

寫出這些國家這一年商品出入口總數(shù)的增添率哪對反義詞表表示義相反的量

講堂練習(xí)

讀以下各數(shù),并指出此中哪些是正數(shù),哪些是負數(shù)。

1,2.5,4,0,3.14,120,1.732,2

37

假如80m表示向東走80m,那么-60m表示向

假如水位高升3m時水位變化記作+3m,那么水位降落3m時水位變化記作水位不升不降時水位變化記作__________。月球表面的白日均勻溫度零上126℃,作________℃,夜均勻溫度零下

150℃,作_______________℃。

1.某人存入行1000元,作+1000元,拿出600元,能夠:

。

2.向走

5米作

5米,那么向西走

10米,作:

3.一潛水艇所在的高度是所在的高度是

50米,一條在潛水艇的上方

米。

10米,

4.某地域人口到2005年將出增,“增〞的意是:

。

5.把以下各數(shù)分填在的橫上:3,-,0,-21,+,-?,+8,-,+82,-1007此中:正數(shù)有:數(shù)有:

6.在一種部件的直徑在上是〔位:㎜〕,表示種部件的準(zhǔn)尺寸

是㎜,加工要求最大不可以超㎜,最小

不可以超㎜。

7.“不是正數(shù)的數(shù)必定是數(shù),不是數(shù)的數(shù)必定是正數(shù)〞,句什

么第2課有理數(shù)與數(shù)軸

知網(wǎng)

1、有理數(shù)分:正有理數(shù)、0、有理數(shù)。

2、有理數(shù)分:整數(shù)〔正整數(shù)、0、整數(shù)〕、分?jǐn)?shù)〔正分?jǐn)?shù)、分?jǐn)?shù)〕

3、定了原點,位度,正方向的直稱數(shù)。

4、只有符號不一樣的兩個數(shù)稱相互反數(shù)。

5、假定a+b=0,a,b相互反數(shù)

例精

〔1〕指出以下各數(shù)中的正數(shù)、數(shù)、整數(shù)、分?jǐn)?shù):

15,6,2,0.9,1,3,0,31,0.63,54〔2〕如所示的形四位同學(xué)畫的數(shù),此中正確的選項是〔〕

〔3〕化以下各數(shù):

-〔-1〕,-〔+2〕,(8),(0.03),(7.8)21

把以下各數(shù)分填在相的大括號里:

+9,-1,+3,21,,1,-15,5,.03243正數(shù)會合:{?},數(shù)會合:{?}.2.最大的整數(shù)是___________;小于3的非整數(shù)有______________________。

的相反數(shù)是它自己。

1.在數(shù)上表示2,0,63.,1的點中,在原點右的點有〔〕5A.0個B.1個C.2個D.3個

把以下各數(shù)分填在相的大括號里:

+9,-1,+3,21,0,31,-15,5,.324正整數(shù)會合:{?},正分?jǐn)?shù)會合:{?},分?jǐn)?shù)會合:{?},整數(shù)會合:{?}.3.化以下各數(shù):82______373.______2______(3.7)______7(0)______(3.3)______(0.75)______.

第3課絕對值

知網(wǎng)1、表示數(shù)a的點到原點的距離稱數(shù)a的2、絕對值的三句:正數(shù)的絕對值是它自己,負數(shù)的絕對值是它的相反數(shù),

0的絕對值是0。

3、數(shù)的大小比較:

①正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù)。

②兩個負數(shù)比較,絕對值大的反而小。

例題優(yōu)選

〔1〕寫出以下各數(shù)的絕對值

526,8,3.9,,,100,011

2〕先化簡,再比較以下各數(shù)的大小

(1)和(2);8和3;(0.3)和|-1|2173

講堂練習(xí)

1、寫出以下各數(shù)的絕對值,找出哪個數(shù)的絕對值最大,哪個數(shù)的絕對值最?。?/p>

-125,+23,,0,,3,223

1、判斷以下說法能否正確:

1〕符號相反的數(shù)互為相反數(shù);

2〕一個數(shù)的絕對值越大,表示它的點在數(shù)軸上越靠右;

〔3〕一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離原點越遠;2、判斷以下各式能否正確:

〔1〕55;〔2〕55;〔3〕55

3、將以下各數(shù)按從小到大的次序擺列,并用“<〞號連結(jié)2310.25,2.3,0.15,0,,,

第4課有理數(shù)的加法

知識網(wǎng)絡(luò)

1、有理數(shù)的計算:先算符號、再算數(shù)值。

2、加法:〔1〕同號兩數(shù)相加,取相同的符號,并把絕對值相加。

2〕異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩數(shù)相加為0。

3〕一個數(shù)同0相加,仍得這個數(shù)。

例題優(yōu)選

〔1〕計算

〔-3〕+〔-9〕;15+〔-22〕;

〔〕+;〔-13〕+0。

講堂練習(xí)

1、用算式表示下邊的結(jié)果:

溫度由-4℃上漲7℃;

收入7元,又支出5元。2、口算〔-4〕+〔-6〕;4+〔-6〕;〔-4〕+6;〔-4〕+4;〔-4〕+14;〔-14〕+4;6+〔-6〕;0+〔-6〕。

1、計算

1〕〔-10〕+〔+6〕

2〕〔+12〕+〔-4〕

3〕〔-5〕+〔-7〕

4〕〔+6〕+〔-9〕

5〕〔〕+〔〕

6〕2(3)5

7〕(1)235

〔8〕(31)(11)412

第5課有理數(shù)的減法

知識網(wǎng)絡(luò)

1、減法的根本理念:化減為加。

2、減法:減去一個數(shù),等于加這個數(shù)的相反數(shù)。

3、較小數(shù)減去較大數(shù),其結(jié)果為負數(shù)。例題優(yōu)選〔1〕計算〔-3〕-〔-5〕;0-7;-〔〕;(31)51。24〔2〕計算

2℃低8℃的溫度

-3℃低6℃的溫度

講堂練習(xí)1、計算6-9;〔+4〕-〔-7〕;〔-5〕-〔-8〕;0-〔-5〕;〔〕;〔〕。

1、計算:

1〕〔-8〕-8

2〕〔-8〕-〔-8〕

3〕8-〔-8〕

4〕8-8

5〕0-6

6〕0-〔-6〕

7〕16-478〕28-〔-74〕

9〕〔〕-〔+7〕

10〕〔〕-〔〕

第6課有理數(shù)的乘法

知識網(wǎng)絡(luò)

1、乘法法那么:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘

2、任何數(shù)與0相乘,都得0

3、乘積為1的兩個個數(shù)互為倒數(shù)

例題優(yōu)選〔1〕計算:〔-3〕*98*〔-1〕(1)*(2)22〕用正負數(shù)表示氣溫的變化量,上漲為正,降落為負。爬山隊登攀一座山岳,每登高1km氣溫的變化量為-6℃,登攀3km后,氣溫有什么變化

講堂練習(xí)1、計算6*〔-9〕;〔-4〕*6;〔-6〕*〔-1〕;0*〔-5〕;2*(9);(1)*134341、計算〔1〕5*〔-6〕〔2〕〔-6〕*5〔3〕〔-25〕*〔-4〕〔4〕85*3〔5〕2021*0〔6〕1*223〔7〕1*12〔〕5483*6第7課有理數(shù)的除法

知識網(wǎng)絡(luò)

1、除法化乘法:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。

2、兩個數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等

于0的數(shù),都得0。

例題優(yōu)選1、計算:〔-36〕÷9;(12)(3)2552、化簡以下分?jǐn)?shù):12;45312講堂練習(xí)1、計算:〔1〕〔-18〕÷6;〔2〕〔-63〕÷〔-7〕;〔3〕1÷〔-9〕;〔4〕0÷〔-8〕;〔5〕〔〕÷;〔6〕(6)(2);551.寫出以下各數(shù)的倒數(shù):〔1〕-15〔2〕5〔〕932、計算:〔1〕-91÷13〔2〕-56÷〔-14〕〔3〕16÷〔-3〕〔4〕〔-48〕÷〔-16〕〔5〕4(1)〔〕35689(6)33(11)〔8〕〔7〕4746

第8課有理數(shù)的乘方

知識網(wǎng)絡(luò)

1、乘方:表示n個相同因數(shù)的

積。-32=-9(-3)2=9-14=-1(-1)4=1

2、負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。

3、正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

4、混淆運算:先乘方,再乘除,后加減,同級運算從左到右,有括號的先算括號。

例題優(yōu)選

1、回復(fù)以下問題:

(7)8中,底數(shù)、指數(shù)各是什么

88是正數(shù)仍是負數(shù)(10)中,-10叫做什么數(shù)8叫做什么數(shù)(10)

2、計算:

〔1〕(1)10〔2〕(1)7〔3〕83

〔4〕(5)3〔5〕3〔6〕53講堂練習(xí)

1、計算:

〔1〕2*(3)34*(3)15〔2〕(2)3(3)*[(4)22](3)2(2)

1、計算:

〔1〕(1)10*2(2)34〔〕423(10)[(4)10*2]314222021〔2〕(5)3*()〔4〕(3)(3)123177(36)(36)〔5〕412〔6〕

第9課用式子表示數(shù)與數(shù)目關(guān)系

知識網(wǎng)絡(luò)

1、在小學(xué),我們學(xué)過用字母表示數(shù),知道能夠用字母或含有字母的式子表示數(shù)和數(shù)目關(guān)系,這樣的式子在數(shù)學(xué)中有重要作用。

2、進一步認識含有字母的數(shù)學(xué)式子,并為一元一次方程等后續(xù)內(nèi)容的學(xué)習(xí)打下

根基。

3、列式子時注意:

①數(shù)與字母、字母與字母相乘省略乘號;

②數(shù)與字母相乘時數(shù)字在前;

③式子中出現(xiàn)除法運算時,一般按分?jǐn)?shù)形式來寫;

④帶分?jǐn)?shù)與字母相乘時,把帶分?jǐn)?shù)化成假分?jǐn)?shù);

⑤帶單位時,適合加括號.

例題優(yōu)選

1、蘋果的原價是每千克p元,按8折優(yōu)惠銷售,用式子表示現(xiàn)價。

2、某種商品每袋元,在一個月內(nèi)的銷售量是m袋,用式子表示在這個月內(nèi)銷售

這種商品的收入。

3、某產(chǎn)品前年的產(chǎn)量是n件,昨年的產(chǎn)量是前年的m倍,用式子表示昨年的產(chǎn)

量。

4、一條河的水流速度是h,船在靜水中的速度是Vkm/h,用式子表示船在這條河中

順流行駛和逆水行駛的速度

1、5箱蘋果重mkg,每箱重kg。

2、一個數(shù)比a的2倍小5,個數(shù)。

3、全校學(xué)生數(shù)x,此中女生占數(shù)52%,女生人數(shù)是,男生人數(shù)

是。

1、在一個大正方形片中挖去一個小正方形片,大正方形的是a厘米,

小正方形的是b厘米,用式子表示節(jié)余局部的面。

2、小明筆m支,每支元,本n本,每本2元。用代數(shù)式表示他

本和筆一共花的數(shù)。

3、察以下各式:x,x+1,x+2,x+3,?,按此律,第n個式子是

。4、禮堂第1排有1個座位,后邊每排都比前一排多一個座位.用式子表示第n排的座位數(shù)是。

第10課單項式

知識網(wǎng)絡(luò)

1、單項式的觀點:數(shù)與字母的積這樣的代數(shù)式叫做單項式,單唯一個數(shù)或一個

字母也是單項式。

注意:數(shù)與字母之間是乘積關(guān)系。

2、單項式的系數(shù):單項式中的數(shù)字因數(shù)叫做單項式的系數(shù)。

假如一個單項式,只含有字母因數(shù),是正數(shù)的單項式系數(shù)為1,是負數(shù)的單項式系數(shù)為—1。

3、單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

例題優(yōu)選

1、用單項式填空,并指出它們的系數(shù)和次數(shù):

1〕每包書有10冊,n包書有_____冊;

2〕一個長方體的長寬高分別是x,x,y,那么它的體積是_______;

3〕一臺電腦原價a元,此刻按9折銷售,這臺電腦此刻的售價為________元;

4〕半徑為r的圓的面積是________;

5〕一個長方形的長m,寬是am,這個長方形的面積是_________㎡。

評論:〔1〕有單位的帶單位,沒單位不帶。

〔2〕用字母表示數(shù)后,同一個式子能夠表示不一樣的含義。例子中的〔3〕

5〕兩個小題中,既能夠表示電腦的售價,也能夠表示長方形的面積。聰慧的同學(xué),你能給予一個含義嗎

講堂練習(xí)

1、填表:

單項式2a2xy2t22vt3系數(shù)

次數(shù)

2、填空:

1〕全校學(xué)生總數(shù)是x,此中女生占總數(shù)的48%,那么女生人數(shù)是________,男生人數(shù)是________;

2〕一輛長途汽車從楊柳村出發(fā),3h后抵達距出發(fā)地skm的溪河鎮(zhèn),這輛長途汽車的均勻速度是________km/h;〔3〕產(chǎn)量由mkg增添10%,就抵達

________kg.

1、棱長為acm的正方體的表面積.

2、每件a元的上衣,降價20%后的售價是多少元3、一輛汽車的行駛速度是vkm/h,th行駛多少千米4、長方形綠地的長、寬分別是am,bm,假如長增添xm,新增添的綠地面積

是多少平方米

第11課多項式

知識網(wǎng)絡(luò)

1、多項式的觀點:幾個單項式的和叫做多項式。

2、在多項式中,每個單項式叫做多項式的項,此中不含字母的項叫做常數(shù)項。

一個多項式有幾項就叫做幾項式。

3、多項式中的符號,看作各項的性質(zhì)符號。

4、多項式的次數(shù):多項式中,次數(shù)最高的項的次數(shù),就是這個多項式的次數(shù)。

5、整式:單項式和多項式統(tǒng)稱為整式。

例題優(yōu)選

1、如圖,式子表示圓環(huán)的面積。當(dāng)R=15cm,r=10cm時,求圓環(huán)

的面積〔π取〕R

r

講堂練習(xí)

1、填空:

〔1〕a,b分別表示長方形的長和寬,那么長方形的周長

l=________,面積

S=

________,當(dāng)a=2cm,b=3cm時,l=________cm,S=________cm2

〔2〕a,b分別表示梯形的上底和下底,h表示梯形的高,那么梯形的面積S=

________,當(dāng)a=2cm,b=4cm,h=5cm,S=________cm2.2、用整式填空,指出單項式的次數(shù)以及多項式的次數(shù)和項:

〔1〕每袋大米5kg,x袋大米〔〕kg;

〔2〕體重由xkg增添2kg后是〔〕kg;

〔3〕如圖〔圖中長度單位:m〕,暗影局部的面積是〔〕㎡.

1、列式表示:

〔1〕溫度由t℃上漲5℃后是多少

〔2〕兩車同時、同地、同向出發(fā),快車行駛速度是xkm/h,慢車行駛速度是y

km/h,3h后兩車相距多少千米

3〕某種蘋果的售價是每千克x元〔x<10〕,用50元買5kg這種蘋果,應(yīng)找回多少錢

〔4〕如圖〔圖中長度單位:cm〕,鋼管的體積是多少3、填表:

整式-ab223x2y242244ab4x-3a-ab+b1552系數(shù)不填不填

次數(shù)

項數(shù)不填不填不填

第12課同類項

知識網(wǎng)絡(luò)

1、同類項的觀點:

所含字母相同,而且相同字母的次數(shù)也相同的項叫做同類項。

2、掌握同類項的觀點時注意:

1〕判斷幾個單項式或項,是不是同類項,就要掌握兩個條件:①所含字母相同。

②相同字母的次數(shù)也相同。

2〕同類項與系數(shù)沒關(guān),與字母擺列的次序也沒關(guān)。

3〕幾個常數(shù)項也是同類項。

例題優(yōu)選1、思慮以下各組是不是同類項:

〔1〕和;〔2〕4abc和4ab;

2332nn+1和-3xnn+1〔3〕-5mn和2nm;〔4〕7xyy〔5〕0和2021〔6〕x2y和11yx23

2、假如3xky與x2y是同類項,那么k=____.

講堂練習(xí)1、以下各組式子中,為同類項的是().(A)5x2y與-2xy2(B)4x與42(C)-3xy與3yx(D)3x3y4與一3x4y322、以下各組中的兩項是同類項的有()個,①3mn與3mnp;②42與a2;③2x與2;④1與2;⑤2a與-3a⑥3a2bx23ab2.

1(B)2(C)3(D)4

3、假定2xmb3與3x4bn是同類項,那么m=____,n=.

1、假如4xay5與x2yb1的是同類項,那么a=____,b=.

2、找朋友,將下邊兩個方框中的同類項用直線連結(jié)起來.3、指出以下多項式中的同類項〔注意帶上符號〕:

(1)3x-2y+1+3y-2x-5;(2)-3a2b+5+5a2b-2a2b-b.

4、k為何值時,3x2y2k與4x2y6是同類項,并求-2k十k2-1的值.

第13課歸并同類項

知識網(wǎng)絡(luò)

1、把多項式中的同類項歸并成一項,叫做歸并同類項。

2、歸并同類項后,所得項的系數(shù)是歸并前各同類項的系數(shù)的和,且字母連同它

的指數(shù)不變。

3、在掌握歸并同類項時注意:

〔1〕假如兩個同類項的系數(shù)互為相反數(shù),歸并同類項后,結(jié)果為0.

2〕不要遺漏不可以歸并的項。

3〕只需不再有同類項,就是結(jié)果〔可能是單項式,也可能是多項式〕例題優(yōu)選1、歸并以下同類項:〔1〕xy21xy25〔2〕3x2y2x2y3xy22xy22、先歸并同類項,再求值:4a23b22ab4a24b2,此中a1,b12講堂練習(xí)

1、計算:

1〕12x-20x

2〕-5a+-

〔3〕1y2y2y3

4〕-6ab+ba+8ab

5〕10y2-.

6〕x+7x-5x

2、求以下各式的值:

1〕3a+2b-5a-b,此中a=-2,b=1

2〕3x-4x2+7-3x+2x2+1,此中x=-3.1、計算:

1〕2x-

2〕3x-x-5x

3〕m-n2+m-n2.

4〕-b+-

2、列示計算:

〔1〕列式表示比a的5倍大4的數(shù)與比a的2倍小3的數(shù),計算這兩個數(shù)的和

〔2〕列式表示比x的7倍大3的數(shù)與比x的6倍小5的數(shù),計算這兩個數(shù)的差.

第14課去括號

知識網(wǎng)絡(luò)

1、去括號的實質(zhì):乘法分派率

2、去括號的法那么:

1〕“()〞前是“+〞去掉“+()〞,括號內(nèi)各項的符號都不變...2〕“()〞前是“-〞去掉“-()〞,括號內(nèi)各項的符號都改變...

3、用字母表示為:a+(b+c)=a+b+c

a-(b+c)=a-b-c

例題優(yōu)選

1、去括號:

1〕a+〔b-c〕

2〕a-〔b-c〕

3〕a+〔-b+c〕

4〕a-〔-b-c〕

2、先去括號,再歸并同類項:

〔1〕〔x+y-z〕+〔x-y+z〕-〔x-y-z〕

〔2〕a22abb2a22abb2

〔3〕32x2y223y22x2

講堂練習(xí)

1、判斷系列去括號能否正確〔正確的打“√〞,不正確的打“×〞〕:〔1〕a-(b-c)=a-b-c

(2)-(a-b+c)=-a+b-c

(3)c+2(a-b)=c+2a-b

2、填空:

〔1〕(a-b)+(-c-d)=;

(2)(a-b)-(-c-d)=;

(3)-(a-b)+(-c-d)=;

(4)-(a-b)-(-c-d)=;

1、以下去括號中正確的選項是〔〕

A.x+〔3y+2〕=x+3y-2B.a(chǎn)2-〔3a2-2a+1〕=a2-3a2-2a+1

22-2y-13232C.y+〔-2y-1〕=y(tǒng)D.m-〔2m-4m-1〕=m-2m+4m-1

2、以下去括號中錯誤的選項是〔〕

A.3x2-〔2x-y〕=3x2-2x+y

B.x2-3〔x+2〕=x2-3x-244

C.5a+〔-2a2-b〕=5a-2a2-b2

D.-〔a-3b〕-〔a2+b2〕=-a+3b-a2-b2

3、a+b+2〔b+a〕-4〔a+b〕歸并同類項等于〔〕A.a(chǎn)+bB.-a-bC.b-aD.a(chǎn)-b

4、先化簡,再求值

〔1〕4〔y+1〕+4〔1-x〕-4〔x+y〕,此中,x=1,y=14.83

2〕4a2b-[3ab2-2〔3a2b-1〕],此中,a=-,b=1.

第15課整式加減

知識網(wǎng)絡(luò)

1、整式加減的實質(zhì):去括號+歸并同類項

2、整式加減的結(jié)果:沒有括號,沒有同類項

例題優(yōu)選

1、計算

〔1〕(2x3y)(5x4y)〔2〕(8a7b)(4a5b)2、筆錄本的單價是x元,圓珠筆的單價是y元。小紅買3本筆錄本,2支圓珠

筆;小明買4本筆錄本,3支圓珠筆。小紅和小明一共花了多少錢

講堂練習(xí)1、計算:xy-xy-〔-xy〕〔〕112122)〔1〕3422abaa4(ab3332、計算:

1〕〔-x+2x2+5〕+〔4x2-3-6x〕

2〕〔3a2-ab+7〕-〔-4a2+2ab+7〕

、先化簡下式,再求值:a2b-ab2〕-〔ab2+a2b〕,此中a1,b135〔33231、計算:x-〕〔〕1〔1〕2〔423(1x)6

3〕-x+〔2x-2〕-〔3x+5〕

4〕3a2+a2-〔2a2-2a〕+〔3a-a2〕

2、計算:

1〕〔5a+4c+7b〕+〔5c-3b-6a〕

2〕〔8xy-x2+y2〕-〔x2-y2+8xy〕

〔3〕3x2-[7x-〔4x-3〕-2x2]第16課從算式到方程

知識網(wǎng)絡(luò)

1、一個方程中,假如只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的整式方程叫

做一元一次方程。〔linearequationinone〕

2、一般形式:ax+b=0〔a、b為常數(shù),a≠0〕。一元一次方程只有一個解。

3、一元一次方程的最后結(jié)果(方程的解)是x=a的形式

例題優(yōu)選

1、依據(jù)以下問題,設(shè)未知數(shù)并列出方程。

〔1〕用一根長24cm的鐵絲圍成一個正方形,正方形的邊長是多少

2〕一臺計算機已使用1700小時,估計每個月再使用150小時,經(jīng)過多少月這臺計算機的使用時間抵達規(guī)定的檢修時間2450小時

〔3〕某校女生占全體學(xué)生數(shù)的52%,比男生多80人,這個學(xué)校有多少學(xué)生

講堂練習(xí)

依據(jù)以下問題,設(shè)未知數(shù),列出方程:

1、環(huán)形跑道一周長400m,沿跑道跑多少周,能夠跑3000m

2、甲種鉛筆每支元,乙種鉛筆每支元,用9元錢買了兩種鉛筆共20支,兩種鉛

筆各買了多少支

3、一個梯形的下底比上底多2cm,高是5cm,面積是40cm2,求上底。

4、用買10個大水杯的錢,能夠買15個小水杯,大水杯比小水杯的單價多5元,兩種水杯的單價各是多少元

1、依據(jù)以下表達,列出方程:

〔1〕比a大5的數(shù)等于8

〔2〕b的三分之一等于9

〔3〕x的2倍與10的和等于18

〔4〕x的三分之一減y的差等于6

〔5〕比a的3倍大5的數(shù)等于a的4倍

〔6〕比b的一半小7的數(shù)等于a與b的和

第17課等式的性質(zhì)

知識網(wǎng)絡(luò)

1、等式性質(zhì)一:等式兩邊加〔或減〕同一個數(shù)〔或式子〕,結(jié)果仍相等。

2、等式性質(zhì)二:等式兩邊乘同一個數(shù)〔或式子〕,或除以同一個不為零的數(shù)〔或

式子〕,結(jié)果仍相等。

例題優(yōu)選

1、利用等式的性質(zhì)解以下方程:

〔1〕x726〔2〕5x20〔3〕1x543講堂練習(xí)

1、利用等式的性質(zhì)解以下方程:

〔1〕x-=〔〕=56245x+=〔〕1x3〔3〕540424列方程并求解:

1、某校七年級1班共有學(xué)生48人,此中女生人數(shù)比男生人數(shù)的4多3人,這個5

班有男生多少人

2、把1400元獎學(xué)金依照兩種獎項獎給22名學(xué)生,此中一等獎每人200元,二

等獎每人50元.獲取一等獎的學(xué)生有多少人

3、形狀如所示,它的面是200cm2,外沿大的半徑是10cm,內(nèi)沿小

的半徑是多少

18課解一元一次方程——歸并同類項

知網(wǎng)

1、依據(jù)同歸并法,歸并同。

例精

1、列方程并求解

1〕某校三年共算機140臺,昨年數(shù)目是前年的2倍,今年數(shù)目又是昨年的2倍,前年個學(xué)校了多少臺算機2〕有一列數(shù),按必定律擺列成1,-3,9,-27,81,-243,?。此中某三個相數(shù)的和是-1701,三個數(shù)各是多少講堂練習(xí)1、解以下方程:〔1〕5x-2x=9〔2〕y3y7223〕-3x+=10

2、某工廠的產(chǎn)值連續(xù)增添,昨年是前年的倍,今年是昨年的產(chǎn)值為550萬元.前年的產(chǎn)值是多少

2倍,這三年的總

1、解以下方程:

〔1〕2x+3x+4x=18〔2〕13x-15x+x=-3

y-y=-〔〕122〔3〕+106154bbb612332、用一根長60m的繩索圍出一個長方形,使它的長是寬的倍,長和寬各應(yīng)是多少

3、小新出生時父親28歲,此刻父親的年紀(jì)是小新年紀(jì)的3倍,求此刻小新的年紀(jì)。

19課解一元一次方程——移項

知識網(wǎng)絡(luò)

1、把等式一邊的某項變號后挪動到另一邊,叫做移項。

2、移項的依照:等式性質(zhì)一。

例題優(yōu)選

1、把一些圖書分給某班學(xué)生閱讀。假如每人分3本,那么節(jié)余20本;假如每人分

4本,那么還缺25本。這個班有多少學(xué)生講堂練習(xí)1、解以下方程:〔1〕6x-7=4x-5〔2〕1x63x242、王芳和李麗同時采摘櫻桃,王芳均勻每小時采摘8kg,李麗均勻每小時采摘

kg.采摘結(jié)束后王芳從她采摘的櫻桃中拿出給了李麗,這時兩人的櫻桃相同多.她們采摘用了多少時間

1、用方程解答以下問題:

〔1〕x的5倍與2的和等于x的3倍與4的差,求x

〔2〕y與-5的積等于y與5的和,求y

2、洗衣機廠今年方案生產(chǎn)洗衣機25500臺,此中Ⅰ型、Ⅱ、Ⅲ型三種洗衣機的數(shù)目比為1∶2∶14,方案生產(chǎn)這三種洗衣機各多少臺

3、幾個人共同種一批樹苗,假如每人種10棵,那么剩下6棵樹苗未種;假如每人

種12棵,那么缺6棵樹苗.求參加種樹的人數(shù)。

20課解一元一次方程——去括號

知識網(wǎng)絡(luò)

1、當(dāng)方程形式較復(fù)雜時,解方程的步驟也相應(yīng)更多些。

2、運用去括號法那么,去掉括號,才能方便進行移項與歸并同類項。

例題優(yōu)選1、某工廠增強節(jié)能舉措,昨年下半年與上半年對比,月均勻用電量減少2000度,整年用電15萬度。這個工廠昨年上半年代均勻用電是多少度講堂練習(xí)

1、解以下方程:

〔1〕2〔x+3〕=5x〔2〕4x+3〔2x-3〕=12-〔x+4〕〔3〕111)〔〕-〔+〕=-〔+〕6(x4)2x7(x423x112123

1、解以下方程:

〔1〕5a+〔2-4a〕=0〔2〕25b-〔b-5〕=29

3〕7x+2〔3x-3〕=20〔4〕8y-3〔3y+2〕=6

2、一艘船從甲碼頭到乙碼頭順流行駛,用了2小時;從乙碼頭返回甲碼頭逆流

行駛,用了小時,水流的速度是3千米/時,求船在靜水中的速度。

21課解一元一次方程——去分母

知識網(wǎng)絡(luò)

1、方程中未知數(shù)的系數(shù)常常不是整數(shù),這就需要先去分母,化分?jǐn)?shù)系數(shù)為整數(shù)

系數(shù)。

2、去分母的依照:等式性質(zhì)二。

例題優(yōu)選

1、一個數(shù),它的三分之二,它的一半,它的七分之一,它的所有,加起來總合是33,求這個數(shù)。

講堂練習(xí)1、解以下方程:(1)1x122x(2)3xx132x12423

2、用方程解答以下問題:

〔1〕x與4之和的倍等于x與14之差的倍,求x

〔2〕y的3倍與之和的二分之一等于y與1之差的四分之一,求y.

1、解方程:〔1〕3x52x1〔2〕x33x423515〔3〕3y115y7〔4〕5y4y125y546341222課實質(zhì)問題與一元一次方程——配套問題

知識網(wǎng)絡(luò)

1、列方程的根本流程:

〔1〕讀題,審題,弄清題目在表達一個什么事情。(讀一次沒懂我們多讀幾次)2〕確立題目問什么〔一般來說,題目問什么,我們就設(shè)什么為未知數(shù)〕

3〕列出能夠反應(yīng)題目所表達的事情的等量關(guān)系。

4〕將等量關(guān)系慢慢細化,并找出哪些是量哪些是未知量。

5〕量代入條件,未知量代入未知數(shù)X。

2、不但要見多能識廣,還要總結(jié)題目的種類,學(xué)會將做過的應(yīng)用題歸類。

例題優(yōu)選

1、某車間22名工人生產(chǎn)螺釘和螺母,每人每日均勻生產(chǎn)螺釘1200個或螺母

2000個,一個螺釘要配兩個螺母,為了使每日生產(chǎn)的產(chǎn)品恰好配套,應(yīng)當(dāng)分派多少名工人生產(chǎn)螺釘,多少工人生產(chǎn)螺母

講堂練習(xí)

1、某工地需要派48人去挖土和運土,假如每人每日均勻挖土5方或運土3方,

那么應(yīng)當(dāng)如何安排人員,正好能使挖的土實時運走

32、制作一張桌子要用一個桌面和4條桌腿,1m木材可制作20個桌面,或許制

3作400條桌腿,現(xiàn)有12m木材,應(yīng)如何方案用料才能制作盡可能多的桌子

1、用白鐵皮做罐頭盒,每張鐵皮可制盒身25個,或制盒底40個,一個盒身與兩個盒底配成一套.此刻有36張白鐵皮,用多少張制盒身,多少張制盒底,可使盒身與盒底正好配套

2、某車間有28名工人,生產(chǎn)一種螺栓和螺帽,均勻每人每小時能生產(chǎn)螺栓12個或螺帽18個,兩個螺栓要配三個螺帽,應(yīng)分派多少人生產(chǎn)螺栓,多少人生產(chǎn)螺帽,才能使生產(chǎn)的螺栓和螺帽恰好配套

3、某車間每日能制作甲種部件500只,或許制作乙種部件250只,甲、乙兩種

部件各一只配成一套產(chǎn)品,現(xiàn)要在30天內(nèi)制作最多的成套產(chǎn)品,那么甲、乙兩種

部件各應(yīng)制作多少天

23課實質(zhì)問題與一元一次方程——工程問題

知識網(wǎng)絡(luò)

1、實質(zhì)工作中出現(xiàn)的單位量有:工作總量、工作效率、工作時間

2、工作總量=工作效率×__________。

3、常常在題目中沒有給出工作總量時,設(shè)工作總量為單位1。

4、工程問題常用等量關(guān)系:局部工作量+局部工作量=工作總量。

例題優(yōu)選

1、整理一批書本,甲獨做需15天達成,乙獨做需12天達成,現(xiàn)先由甲、乙合

3天后,甲有其余任務(wù),剩下的書由乙獨自達成,問乙還要幾日才能整理好所有書本

講堂練習(xí)

1、一項工程,甲獨做10h達成,乙獨做15h達成,丙獨做20h達成,開始時三

人合作,半途甲還有任務(wù),由乙、丙兩人達成,從開始到工程達成共用6h,問甲實質(zhì)做了幾小時

1、整理一批數(shù)據(jù),由一人做需80h達成.此刻方案先由一些人做2h,再增添

5人做8h,達成這項工作的3.如何安排參加整理數(shù)據(jù)的詳細人數(shù)

4

2、某中學(xué)的學(xué)生自己著手整修操場,假如讓七年級學(xué)生獨自工作,需要h達成;

假如讓八年級學(xué)生獨自工作,需要5h達成.假如讓七、八年級學(xué)生一同工作1

h,再由八年級學(xué)生獨自達成節(jié)余局部,共需多少時間達成

3、一水池,單開進水管3小時可將水池注滿,單開出水管4小時可將滿池水放

完。現(xiàn)對空水池先打開進水管2小時,而后打開出水管,使進水管、出水管一同

開放,問再過幾小時可將水池注滿

24課實質(zhì)問題與一元一次方程——行程問題知識網(wǎng)絡(luò)

1、行程問題常有的種類有相遇,追擊,分道揚鑣等。

2、剖析這種問題必定要做的事情:繪圖剖析。

例題優(yōu)選

1、甲、乙兩站相距480公里,一列慢車從甲站開出,每小時行90公里,一列快

車從乙站開出,每小時行140公里。

1〕慢車先開出1小時,快車再開。兩車相向而行。問快車開出多少小時后兩車相遇

2〕兩車同時開出,相背而行多少小時后兩車相距600公里

兩車同時出發(fā),快車去追慢車,多少小時后能夠追上

講堂練習(xí)

兩輛車從相距360千米的兩地出發(fā)相向而行,甲車先出發(fā),每小時行60千米,1小時后乙車出發(fā),每小時行40千米,乙車出發(fā)幾小時兩車相遇2.兩村相距每小時行

35千米,甲乙二人從兩村出發(fā),相向而行,甲每小時行

4千米,甲先出發(fā)1小時后,乙才出發(fā),當(dāng)他們相距

5千米,乙

9千米時,乙

行了多長時間

1、甲乙二人從相距45千米的兩地同時出發(fā)相向而行,甲比乙每小時多行1千米,

小時后二人相遇,求兩人的速度。

2、甲乙二人從相距100千米的兩地出發(fā)相向而行,甲先出發(fā)1小時,他們在乙出發(fā)4小時后相遇,甲比乙每小時多行2千米,求兩人的速度。

25課實質(zhì)問題與一元一次方程——盈虧問題

知識網(wǎng)絡(luò)

1、盈虧問題中的根本等量關(guān)系:收益=售價-本錢;收益=本錢×收益率。

2、盈余:售價-本錢>0;損失:售價-本錢<0

3、全部用數(shù)聽說話,切忌想自然做題。

例題優(yōu)選

1、某商鋪在某一時間以每件60元的價錢賣兩件衣服,此中一件盈余百分之25,另一件損失百分之25,賣出這兩件衣服是盈余仍是損失,或不盈余不損失。

講堂練習(xí)

1、某商鋪有兩種書包,每個小書包比大書包的進價少10元,而它們的售后收益額相同.此中,每個小書包的盈余率為30%,每個大書包的盈余率為20%,試求兩種書包的進價。

1、用A4紙在某謄印社復(fù)印文件,復(fù)印頁數(shù)不超出20時,每頁收費元;復(fù)印頁

數(shù)超出20時,超出局部每頁收費降為元.在某圖書室復(fù)印相同的文件,不論復(fù)

印多少頁,每頁收費元.復(fù)印張數(shù)為多少時,兩處的收費相同

2、〔古代問題〕某人工作一年的酬勞是年關(guān)給他一件衣服和10枚銀幣,但他干

7個月就決定不再持續(xù)干了,結(jié)賬時,給了他一件衣服和2枚銀幣.這件衣服值多少枚銀幣

第26課立體圖形與平面圖形

知識網(wǎng)絡(luò)

1、認識多姿多彩的圖形世界。

2、幾何學(xué)研究的內(nèi)容:物體的形狀、大小和地點關(guān)系。

3、點動成線、線動成面,面動成體。

例題優(yōu)選

1、你認識下邊幾幅圖嗎

講堂練習(xí)

1、認識以下列圖形,認識立體圖形的分類并說出圖形名字。

2、以下列圖,把以下列圖形與相應(yīng)的實物連結(jié)起來。地球儀電視機箱水管瓦房頂

1、如圖,說出以下列圖中的一些物體的形狀所對應(yīng)的立體圖形。

2、圖中的各立體圖形的表面中包括哪些平面圖形試指出這些平面圖形在立體圖

形中的地點。第27課三視圖

知識網(wǎng)絡(luò)

1、三視圖:從正面、左面、上邊不一樣方向看到的平面圖形。

例題優(yōu)選

1、畫出下邊圖形的三視圖:講堂練習(xí)

1、〔1〕下左圖是由假定干個小正方形所搭成的幾何體及從上邊看這個幾何體所

看到的圖形,那么從左側(cè)看這個幾何體時,所看到的幾何圖形是〔〕

從上邊看

從正面看ABCD

〔2〕以下列圖的4個立體圖形中,從左側(cè)看是長方形的有〔〕個

A.0B.1C.2D.3

圓柱體圓錐體半球體長方體1、畫出以下列圖形的三視圖。

第28課直線、射線、線段

知識網(wǎng)絡(luò)

1、兩點確立一條直線。

2、往常用一個小寫字母或許兩個大寫字母表示。

3、兩點之間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論