全稱量詞命題和存在量詞命題的否定 課件-高一上學期人教A版(2019)必修第一冊_第1頁
全稱量詞命題和存在量詞命題的否定 課件-高一上學期人教A版(2019)必修第一冊_第2頁
全稱量詞命題和存在量詞命題的否定 課件-高一上學期人教A版(2019)必修第一冊_第3頁
全稱量詞命題和存在量詞命題的否定 課件-高一上學期人教A版(2019)必修第一冊_第4頁
全稱量詞命題和存在量詞命題的否定 課件-高一上學期人教A版(2019)必修第一冊_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1.5.2全稱量詞命題和存在量詞命題的否定全稱量詞命題:“對M中任意一個x,有p(x)成立”x∈M,p(x)含有全稱量詞的命題,叫做全稱量詞命題符號簡記為:復習回顧常見的全稱量詞有“所有的”“任意一個”

“一切”“每一個”“任給”“所有的”等.要判定全稱量詞命題“x∈M,p(x)”是真命題,需要對集合M中每個元素x,證明p(x)成立;如果在集合M中找到一個元素x0,使得p(x0)不成立,那么這個全稱量詞命題就是假命題存在量詞命題:“存在M中的一個x,使p(x)成立”符號簡記為:含有存在量詞的命題,叫做存在量詞命題x∈M,p(x)復習回顧常見的存在量詞有“存在一個”“至少一個”“有些”“有一個”“對某個”“有的”等.要判定存在量詞命題“x∈M,p(x)”是真命題,只需在集合M中找到一個元素x0,使p(x0)成立即可.如果在集合M中,證明使p(x)成立的元素x不存在,則存在量詞命題是假命題

寫出下列命題的否定,并判斷真假:(1)所有的矩形都是平行四邊形;(2)每一個素數都是奇數;(3)?x∈R,x+|x|≥0.它們與原命題在形式上有什么變化?探究一一個命題和它的否定不能同時為真命題,也不能同時為假命題,只能一真一假.(1)存在一個矩形不是平行四邊形(2)存在一個素數不是奇數(3)?x∈R,x+|x|<0真假真假真假概念1全稱量詞命題:?x∈R,p(x),它的否定:?x∈R,?p(x).也就是說,全稱量詞命題的否定是存在量詞命題.提示:是,因為全稱量詞的否定一定是存在量詞,所以全稱量詞命題的否定一定是存在量詞命題.1.全稱量詞命題的否定一定是存在量詞命題嗎?2.用自然語言描述的全稱量詞命題的否定形式唯一嗎?提示:不唯一,如“所有的菱形都是平行四邊形”,它的否定是“并不是所有的菱形都是平行四邊形”,也可以是“有些菱形不是平行四邊形”.思考例1寫出下列全稱量詞命題的否定:(1)所有能被3整除的整數都是奇數;(2)每一個四邊形的四個頂點在同一個圓上;(3)對任意x∈Z,x2的個位數字不等于3.例題講解解:(1)存在一個能被3整除的整數不是奇數.(2)存在一個四邊形,它的四個頂點不在同一個圓上.(3)?x∈Z,x2的個位數字等于3.練習寫出下列全稱量詞命題的否定,并判斷真假:(1)?x∈R,1-≤1.(2)所有的正方形都是矩形.(3)對任意x∈Z,x2的個位數字不等于3.(4)正數的絕對值是它本身.解(1)?x∈R,1->1.假命題.(2)存在一個正方形不是矩形.假命題.(3)存在一個x∈Z,x2的個位數等于3.假命題.(4)存在一個正數,它的絕對值不是它本身.假命題探究二寫出下列命題的否定:(1)存在一個實數的絕對值是正數;(2)有些平行四邊形是菱形;(3)?x∈R,x2-2x+3=0.它們與原命題在形式上有什么變化?(1)所有實數的絕對值都不是正數(2)每一個四邊形都不是菱形(3)x∈R,x2-2x+30≠對含有一個量詞的存在量詞命題的否定,有下面的結論:存在量詞命題:

?x∈R,?p(x)它的否定:

?x∈R,p(x)也就是說,存在量詞命題的否定是全稱量詞命題.概念23)有一個偶數是素數.P:解:2)該命題的否定:所有三角形都不是等邊三角形3)該命題的否定:任意一個偶數都不是素數例2例3寫出下列命題的否定,并判斷真假;(1)任意兩個等邊三角形都相似;

解:(1)該命題的否定:存在兩個對邊三角形,它們不相似。假命題。(2)該命題的否定:假命題。練習:小結1.對全稱命題否定的步驟第一步改變量詞:把全稱量詞換為恰當的存在量詞;第二步否定性質:原命題中的“p(x)成立”改為“非p(x)成立”.2.對存在性命題否定的步驟第一步改變量詞:把存在量詞換為恰當的全稱量詞;第二步否定性質:原命題中的“p(x)成立”改為“非p(x)成立”

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論