m6A甲基化研究方法_第1頁
m6A甲基化研究方法_第2頁
m6A甲基化研究方法_第3頁
m6A甲基化研究方法_第4頁
m6A甲基化研究方法_第5頁
已閱讀5頁,還剩6頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

(完整版)m6A甲基化研究方法(完整版)m6A甲基化研究方法(完整版)m6A甲基化研究方法RNA甲基化修飾(m6A)研究思路及方案設計RNA甲基化修飾約占所有RNA修飾的60%以上,而N6-甲基腺嘌呤(N6—methyladenosine,m6A)是高等生物mRNA和lncRNAs上最為普遍的修飾。目前發現microRNA,circRNA,rRNA,tRNA和snoRNA上都有發生m6A修飾.m6A修飾主要發生在RRACH序列中的腺嘌呤上,其功能由“編碼器(Writer)”、“消碼器(Eraser)”和“讀碼器(Reader)”決定ADDINEN。CITEADDINEN.CITE.DATA[HYPERLINK\l”_ENREF_1”\o"Fu,2014#8522”1]。“編碼器(Writer)"即甲基轉移酶,目前已知這個復合物的成分有METTL3,METTL14,WTAP和KIAA1429;而ALKBH5和FTO作為去甲基酶(消碼器)可逆轉甲基化;m6A由m6A結合蛋白識別,目前發現m6A結合蛋白(讀碼器)有YTH結構域蛋白(包括YTHDF1,YTHDF2,YTHDF3,YTHDC1和YTHDC2)和核不均一蛋白HNRNP家族(HNRNPA2B1和HNRNPC)。m6A酶系統METTL3是早先被鑒定為結合SAM的組件,其缺失引起小鼠胚胎干細胞、Hela細胞和HepG2細胞中m6Apeaks的減少.METTL3及其同源蛋白METTL14定位在富含剪切因子的細胞核內亞細胞器-核小斑(Nuclearspeckle)上,顯示m6A修飾可能和RNA的剪切加工相關.WTAP與METTL3–METTL14二聚體相互作用,并共定位于核小斑,影響甲基化效率,參與mRNA剪。而KIAA1429作為候選的甲基轉移酶復合體的新亞基,是整體甲基化進程所必須的ADDINEN.CITEADDINEN。CITE。DATA[HYPERLINK\l”_ENREF_2"\o"Schwartz,2014#8496”2].FTO是ALKB家族的成員,作為第一個被發現的去甲基酶,可影響剪切因子SRSF2的RNA結合能力,進而調控pre-mRNA的剪切加工過程ADDINEN。CITEADDINEN。CITE.DATA[HYPERLINK\l”_ENREF_3"\o"Zhao,2014#8497”3].目前已發現FTO調節異常與肥胖、大腦畸形和生長遲緩相關,揭示m6A可能對這些疾病具有重要的調節功能ADDINEN。CITEADDINEN.CITE.DATA[HYPERLINK\l”_ENREF_4”\o”Fu,2013#8498”4-6]。ALKBH5是ALKB家族中被發現具有去甲基作用的另一個成員,以RNaseA敏感的方式與核小斑共定位,它可直接催化m6A—甲基化腺苷去除甲基而不同于FTO的氧化去甲基化ADDINEN.CITEADDINEN。CITE。DATA[HYPERLINK\l”_ENREF_7"\o”Zheng,2013#8501"7].此外,ALKBH5和它的去甲基化活性影響新生mRNA合的成和剪切效率ADDINEN。CITEADDINEN。CITE.DATA[HYPERLINK\l”_ENREF_7”\o"Zheng,2013#8501"7],且ALKBH5敲除雄性小鼠表現出精子發生異常,這可能是精子發生相關基因表達改變的結果ADDINEN.CITEADDINEN.CITE。DATA[\o"Zheng,2013#8501”7].m6AmRNA修飾執行其功能主要通過兩個途徑:精細調控甲基化轉錄本的結構,以阻止或誘使蛋白-RNA相互作用;或被直接由m6A結合蛋白識別,誘發后續反應。目前一類含有YTH功能結構域的蛋白被鑒定為m6A修飾的結合蛋白.其中YTHDF1,YTHDF2,YTHDF3,YTHDC1和YTHDC2己被證實是m6A的結合蛋白.YTHDF1主要影響m6A修飾基因的翻譯,YTHDF2主要影響m6A修飾基因的降解,而YTHDC1結合m6A修飾的基因后影響其剪接。HNRNPC是一種豐富的核RNA結合蛋白,參與pre—mRNA的加工ADDINEN。CITE〈EndNote〉<Cite〉<Author〉Cienikova〈/Author〉〈Year>2014〈/Year>〈RecNum>8503〈/RecNum〉〈DisplayText>[8]〈/DisplayText〉<record>〈rec-number〉8503〈/rec—number>〈foreign-keys〉〈keyapp="EN"db-id="f2s2fdzw5a5wp6epsfu5dtfpwwfa0p2vw9ev”〉8503</key>〈/foreign—keys><ref—typename="JournalArticle”〉17〈/ref—type><contributors〉〈authors〉<author〉Cienikova,Z.〈/author〉〈author>Damberger,F.F。</author><author>Hall,J。</author〉〈author〉Allain,F。H.</author〉<author>Maris,C。〈/author〉</authors〉</contributors>〈auth—address〉DepartmentofBiology,InstituteofMolecularBiologyandBiophysics,ETHZurich,8093Zurich,Switzerland。〈/auth-address〉<titles><title〉Structuralandmechanisticinsightsintopoly(uridine)tractrecognitionbythehnRNPCRNArecognitionmotif</title〉〈secondary-title〉JAmChemSoc〈/secondary—title〉<alt-title〉JournaloftheAmericanChemicalSociety</alt-title></titles〉<pages〉14536-44</pages〉<volume〉136</volume>〈number>41</number〉<edition>2014/09/13</edition〉<keywords〉<keyword〉Heterogeneous-NuclearRibonucleoproteinGroupC/*chemistry〈/keyword><keyword〉Humans〈/keyword>〈keyword>Kinetics</keyword><keyword>Models,Molecular〈/keyword〉〈keyword〉MolecularStructure</keyword>〈keyword>PolyU/*chemistry</keyword〉<keyword〉RNA/*chemistry</keyword〉<keyword>Thermodynamics</keyword></keywords><dates><year〉2014</year〉<pub-dates〉<date>Oct15</date〉</pub—dates〉〈/dates><isbn>1520-5126(Electronic)&#xD;0002-7863(Linking)</isbn>〈accession-num>25216038</accession-num><work-type>ResearchSupport,Non-U.S.Gov&apos;t〈/work-type><urls〉〈related—urls〉〈url>http:///pubmed/25216038〈/url>〈/related-urls>〈/urls>〈electronic—resource—num>10.1021/ja507690d〈/electronic-resource-num><language〉eng〈/language>〈/record></Cite〉</EndNote〉[HYPERLINK\l”_ENREF_8”\o"Cienikova,2014#8503”8],且研究表明HNRNPC通過m6A與RNA結合調控目標轉錄本的豐度和選擇性剪切ADDINEN。CITEADDINEN。CITE.DATA[HYPERLINK\l”_ENREF_9"\o"Liu,2015#8504"9].圖1m6A修飾的酶系統ADDINEN.CITE<EndNote>〈Cite〉〈Author>Zhao〈/Author〉<Year>2017〈/Year><RecNum>8521〈/RecNum〉〈DisplayText>[10]</DisplayText〉<record〉<rec—number>8521〈/rec-number〉〈foreign—keys〉<keyapp="EN”db—id="f2s2fdzw5a5wp6epsfu5dtfpwwfa0p2vw9ev”>8521</key>〈/foreign—keys>〈ref-typename="JournalArticle">17〈/ref-type〉〈contributors>〈authors〉<author>Zhao,B.S.〈/author><author>Roundtree,I。A.〈/author〉<author>He,C.〈/author></authors〉〈/contributors>〈auth-address>DepartmentofChemistry,DepartmentofBiochemistryandMolecularBiology,andInstituteforBiophysicalDynamics,HowardHughesMedicalInstitute,TheUniversityofChicago,929East57thStreet,Chicago,Illinois60637,USA。〈/auth—address>〈titles>〈title>Post-transcriptionalgeneregulationbymRNAmodifications</title>〈secondary-title>NatRevMolCellBiol</secondary-title>〈alt—title〉Naturereviews。Molecularcellbiology〈/alt-title>〈/titles〉<pages>31-42</pages〉〈volume〉18</volume><number〉1</number>〈edition〉2016/11/04</edition〉〈keywords〉〈keyword〉5—Methylcytosine/metabolism〈/keyword>〈keyword〉Adenosine/analogs&amp;derivatives/metabolism</keyword>〈keyword〉Animals</keyword〉<keyword>CellCycle/genetics〈/keyword〉〈keyword>CellDifferentiation/genetics〈/keyword>〈keyword〉CircadianRhythm/genetics〈/keyword><keyword>GeneExpressionRegulation〈/keyword>〈keyword>Humans</keyword〉〈keyword〉Methylation〈/keyword>〈keyword>NucleicAcidConformation〈/keyword〉〈keyword>ProteinBiosynthesis〈/keyword>〈keyword>*RNAProcessing,Post—Transcriptional</keyword>〈keyword>RNAStability〈/keyword〉<keyword〉RNA,Messenger/chemistry/genetics/*metabolism〈/keyword>〈/keywords><dates>〈year>2017〈/year〉〈pub—dates><date>Jan</date〉</pub—dates〉</dates〉〈isbn>1471—0080(Electronic)&#xD;1471—0072(Linking)</isbn><accession-num〉27808276</accession-num><work—type〉Review</work-type〉<urls><related—urls〉<url>http:///pubmed/27808276</url>〈/related—urls〉</urls>〈custom2〉5167638</custom2〉<electronic—resource-num〉10.1038/nrm.2016。132〈/electronic-resource-num>〈language〉eng〈/language>〈/record></Cite>〈/EndNote〉[HYPERLINK\l”_ENREF_10”\o”Zhao,2017#8521”10]m6A生物學功能越來越多的證據表明m6A修飾在哺乳動物中發揮重要的生物功能。例如,在轉錄后水平上調控RNA的穩定性ADDINEN.CITEADDINEN.CITE.DATA[\o”Wang,2014#8489"11]、定位ADDINEN。CITEADDINEN。CITE。DATA[HYPERLINK\l”_ENREF_12"\o”Fustin,2013#8490”12]、運輸、剪切ADDINEN。CITEADDINEN。CITE。DATA[HYPERLINK\l”_ENREF_13”\o”Molinie,2016#8494”13]和翻譯ADDINEN。CITEADDINEN。CITE。DATA[\o”Meyer,2015#8491”14]。ClaudioR.等發現依賴METTL3的pri-miRNA甲基化,會促進DGCR8識別和加工,從而促進microRNA的成熟ADDINEN.CITE<EndNote〉〈Cite〉〈Author>Alarcon〈/Author><Year>2015〈/Year><RecNum>8493</RecNum〉〈DisplayText〉[15]</DisplayText〉<record><rec—number>8493</rec-number><foreign-keys〉<keyapp="EN"db—id="f2s2fdzw5a5wp6epsfu5dtfpwwfa0p2vw9ev”>8493</key></foreign—keys〉<ref—typename="JournalArticle”〉17〈/ref-type><contributors〉<authors〉<author〉Alarcon,C.R。〈/author〉〈author>Lee,H。</author>〈author>Goodarzi,H.</author>〈author>Halberg,N。</author><author〉Tavazoie,S.F.〈/author>〈/authors〉〈/contributors>〈auth-address〉LaboratoryofSystemsCancerBiology,RockefellerUniversity,1230YorkAvenue,NewYork,NewYork10065,USA。</auth-address〉<titles>〈title>N6—methyladenosinemarksprimarymicroRNAsforprocessing</title>〈secondary—title>Nature</secondary-title><alt—title〉Nature〈/alt-title>〈/titles>〈pages>482-5</pages〉<volume〉519</volume〉<number〉7544</number><edition〉2015/03/25</edition>〈keywords>〈keyword〉Adenosine/*analogs&derivatives/metabolism〈/keyword>〈keyword>BaseSequence</keyword〉<keyword>CellLine〈/keyword><keyword>GeneExpressionRegulation〈/keyword〉〈keyword〉Humans〈/keyword><keyword〉Methylation</keyword>〈keyword〉Methyltransferases/deficiency/metabolism</keyword〉<keyword〉MicroRNAs/*chemistry/*metabolism〈/keyword>〈keyword>MolecularSequenceData〈/keyword>〈keyword>NucleicAcidConformation〈/keyword><keyword〉*RNAProcessing,Post-Transcriptional</keyword〉〈keyword〉RNA-BindingProteins/metabolism〈/keyword><keyword〉SubstrateSpecificity〈/keyword></keywords〉<dates〉<year〉2015</year〉〈pub—dates〉〈date〉Mar26</date></pub—dates〉〈/dates〉<isbn>1476—4687(Electronic)&#xD;0028-0836(Linking)〈/isbn><accession-num〉25799998</accession-num〉〈work-type>ResearchSupport,U.S。Gov&apos;t,Non-P。H。S。</work-type>〈urls><related—urls〉〈url>http:///pubmed/25799998</url>〈/related-urls〉〈/urls><custom2〉4475635〈/custom2〉<electronic-resource—num>10.1038/nature14281</electronic-resource-num〉〈language>eng</language〉〈/record〉</Cite〉</EndNote>[\o”Alarcon,2015#8495”16].另外,環狀RNA上m6A的修飾能促進環狀RNA的翻譯ADDINEN.CITEADDINEN.CITE。DATA[HYPERLINK\l”_ENREF_17”\o"Yang,2017#8505”17]。m6A修飾在基因表達調控中起著重要的作用,其調控機制的異常可能與人類疾病或癌癥相關.目前發現m6A可能會影響精子發育(ALKBH5,METTL3,Ythdc2)、發育(METTL3、FTO、ALKBH5)、免疫(METTL3)、UV誘導的DNA損傷反應(METTL3,FTO)、腫瘤生成(YTHDF2)或轉移(METTL14)、干細胞更新(METTL14)、脂肪分化(FTO)、生物節律、細胞發育分化、細胞分裂及其它的一些生命過程。例如,ALKBH5敲除的雄性小鼠增加了mRNA中的m(6)A修飾,其特點是凋亡影響減數分裂中期的精子細胞,引起生育能力受損ADDINEN.CITEADDINEN。CITE.DATA[\o”Zheng,2013#8501"7]。METTL3和METTL14增加弱精癥精子的m6A水平ADDINEN.CITEADDINEN。CITE。DATA[18],在生殖細胞中,METTL3的敲除嚴重抑制精子分化和減數分裂的發生,轉錄組和m6A分析顯示精子發生相關基因的表達和選擇性剪接發生了改變ADDINEN.CITEADDINEN。CITE.DATA[HYPERLINK\l”_ENREF_19”\o"Xu,2017#8509"19]。YTHDC2可促進靶基因的翻譯效率,并降低其mRNA的豐度,在精子發生過程中起關鍵作用。當減數分裂開始時YTHDC2表達上調,YTHDC2敲除小鼠的生殖細胞沒有經過偶線期的發育導致小鼠不育ADDINEN.CITE〈EndNote><Cite><Author>Hsu</Author><Year〉2017</Year〉〈RecNum>8510〈/RecNum>〈DisplayText>[20]〈/DisplayText〉〈record〉〈rec-number〉8510</rec-number〉<foreign—keys〉〈keyapp=”EN”db—id="f2s2fdzw5a5wp6epsfu5dtfpwwfa0p2vw9ev">8510</key〉</foreign-keys><ref-typename="JournalArticle">17〈/ref-type〉<contributors>〈authors〉〈author〉Hsu,P。J。</author><author〉Zhu,Y。</author>〈author〉Ma,H。</author>〈author>Guo,Y.</author><author〉Shi,X。</author〉<author>Liu,Y。〈/author><author〉Qi,M。</author〉<author>Lu,Z。〈/author>〈author〉Shi,H.</author〉〈author>Wang,J.</author>〈author〉Cheng,Y.</author>〈author〉Luo,G.〈/author〉〈author〉Dai,Q.</author〉<author〉Liu,M。</author>〈author>Guo,X.</author><author>Sha,J.</author><author〉Shen,B.</author><author>He,C.〈/author〉〈/authors></contributors><auth—address〉DepartmentofChemistryandInstituteforBiophysicalDynamics,TheUniversityofChicago,Chicago,IL60637,USA.&#xD;HowardHughesMedicalInstitute,TheUniversityofChicago,Chicago,IL60637,USA.&#xD;CommitteeonImmunology,TheUniversityofChicago,Chicago,IL60637,USA。 StateKeyLaboratoryofReproductiveMedicine,DepartmentofHistologyandEmbryology,NanjingMedicalUniversity,Nanjing211166,China。&#xD;DepartmentofBiochemistryandMolecularBiology,TheUniversityofChicago,Chicago,IL60637,USA.</auth-address〉〈titles>〈title>Ythdc2isanN6—methyladenosinebindingproteinthatregulatesmammalianspermatogenesis</title><secondary-title>CellRes</secondary-title><alt-title〉Cellresearch</alt-title>〈/titles><edition>2017/08/16〈/edition>〈dates〉〈year〉2017</year〉〈pub-dates>〈date>Aug15〈/date〉</pub-dates></dates><isbn〉1748—7838(Electronic) ;1001—0602(Linking)〈/isbn〉<accession—num>28809393〈/accession—num〉〈urls〉〈related-urls〉〈url〉http:///pubmed/28809393</url></related—urls>〈/urls><electronic-resource-num>10。1038/cr。2017。99〈/electronic-resource—num〉〈language〉eng</language〉〈/record>〈/Cite〉〈/EndNote〉[HYPERLINK\l”_ENREF_20”\o"Hsu,2017#8510"20]。在DNA損傷反應中,METTL3可促進DNA聚合酶κ(Polκ)與核酸剪切修復途徑快速定位到UV引起的DNA損傷位點,當缺失METTL3時,細胞無法迅速修復UV照射引起的突變,并且對UV照射更加敏感[25]。在淋巴細胞性小鼠過繼轉移模型中,Mettl3缺陷通過影響mRNAm6A修飾,降低SOCS家族mRNA衰減,增加mRNA和蛋白表達水平,從而抑制IL—7介導的STAT5活性和T細胞內穩態增殖和分化,進而抑制腸炎的發生ADDINEN.CITEADDINEN。CITE。DATA[HYPERLINK\l”_ENREF_21”\o”Li,2017#8518”21]。在肝癌中,METTL14通過調控pri-miRNA的m6A修飾,影響MiR-126的生成加工,從而抑制肝癌的轉移ADDINEN.CITEADDINEN。CITE.DATA[\o"Zhang,2016#8512”23]。此外,低氧誘導乳腺癌細胞中依賴ZNF217的NANOG和KLF4的mRNAm6A甲基化抑制,且ALKBH5敲除顯著降低免疫缺陷小鼠乳腺癌的肺轉移ADDINEN.CITEADDINEN.CITE。DATA[HYPERLINK\l”_ENREF_24”\o”Zhang,2016#8513"24]。在肺癌中,METTL3能夠促進肺腺癌細胞的生長、生存和侵襲,但還不清楚它是否作為m6A調節器或效應器發揮作用ADDINEN.CITEADDINEN。CITE。DATA[Lin,2016#8514”25]。在急性髓細胞白血病(AML)患者中,m(6)A調控基因的突變或拷貝數變化與TP53突變存在密切聯系,且m(6)A調控基因的改變與AML不良預后相關ADDINEN。CITE<EndNote〉〈Cite>〈Author〉Kwok〈/Author><Year>2017〈/Year〉<RecNum〉8515〈/RecNum〉<DisplayText>[26]〈/DisplayText><record〉<rec—number〉8515</rec-number〉<foreign—keys〉<keyapp=”EN”db—id=”f2s2fdzw5a5wp6epsfu5dtfpwwfa0p2vw9ev">8515〈/key></foreign-keys〉<ref—typename="JournalArticle”〉17〈/ref—type〉〈contributors>〈authors>〈author〉Kwok,C.T。</author>〈author>Marshall,A。D。〈/author><author>Rasko,J。E.</author><author>Wong,J。J.〈/author>〈/authors〉</contributors><auth—address>Gene&;StemCellTherapyProgram,CentenaryInstitute,UniversityofSydney,Camperdown,2050,Australia。 ;GeneRegulationinCancerLaboratory,CentenaryInstitute,UniversityofSydney,Camperdown,2050,Australia.&#xD;SydneyMedicalSchool,UniversityofSydney,Camperdown,NSW,2006,Australia。&#xD;CellandMolecularTherapies,RoyalPrinceAlfredHospital,Camperdown,2050,Australia. Gene&amp;StemCellTherapyProgram,CentenaryInstitute,UniversityofSydney,Camperdown,2050,Australia.j。wong@.au。&#xD;GeneRegulationinCancerLaboratory,CentenaryInstitute,UniversityofSydney,Camperdown,2050,Australia。j。wong@.au。 SydneyMedicalSchool,UniversityofSydney,Camperdown,NSW,2006,Australia.j。wong@.au。〈/auth—address><titles〉<title〉Geneticalterationsofm6Aregulatorspredictpoorersurvivalinacutemyeloidleukemia</title〉〈secondary-title〉JHematolOncol〈/secondary—title〉<alt—title>Journalofhematology&;oncology〈/alt—title>〈/titles>〈pages〉39〈/pages〉〈volume>10</volume><number>1</number>〈edition>2017/02/06〈/edition><dates〉〈year〉2017〈/year〉<pub—dates〉<date〉Feb02〈/date></pub—dates></dates〉<isbn>1756-8722(Electronic)&#xD;1756—8722(Linking)〈/isbn〉<accession-num〉28153030〈/accession-num〉〈work—type〉Letter〈/work-type〉〈urls><related-urls><url〉http:///pubmed/28153030〈/url〉</related-urls></urls>〈custom2>5290707</custom2〉<electronic—resource-num>10。1186/s13045—017—0410—6〈/electronic—resource—num><language〉eng</language〉</record〉</Cite〉</EndNote〉[\o”Kwok,2017#8515"26]。此外,FTO在AML中高表達,它通過降低mRNA轉錄本中的m(6)水平,調節ASB2和RARA等靶點的表達,增強了白血病癌基因介導的細胞轉化和白血病形成,并抑制全反式維甲酸(ATRA)誘導的AML細胞分化ADDINEN.CITEADDINEN.CITE.DATA[\o”Li,2017#8516"27].在脂肪形成過程中,FTO表達與m6A水平成負相關,促進脂肪形成ADDINEN。CITEADDINEN.CITE.DATA[3]。在膠質細胞瘤樣細胞中,ALKBH5通過lncRNAFOXM1介導FOXM1基因pre—mRNA上的m6A修飾維持膠質瘤細胞的成瘤性ADDINEN.CITEADDINEN.CITE.DATA[HYPERLINK\l”_ENREF_28”\o"Zhang,2017#8507”28]。此外,甲基轉移酶METTL3或METTL14的敲除,能夠改變m6A的富集和ADAM19的表達,極大地促進了膠質瘤細胞的生長、自我更新和腫瘤形成ADDINEN。CITEADDINEN。CITE.DATA[\o"Cui,2017#8508"29].圖2m6ARNA修飾和介導的功能ADDINEN.CITEADDINEN。CITE.DATA[Cao,2016#8520”30]m6A的研究方向主要是通過研究m6A修飾相關的甲基化、去甲基化酶和識別蛋白的功能,進而研究m6A修飾的生物學功能和作用機制:一般通過敲除m6A酶分子,研究下游功能基因分子的表達和m6A甲基化情況,通過介導相關基因異常(可變剪切、穩定性、翻譯、miRNA調控)影響細胞表型和功能特征。m6A修飾圖譜構建及作用機制:通過m6A甲基化測序(MeRIP—Seq,miCLIP)構建疾病細胞模型或者發病組織的m6A修飾譜,分析m6A的motif,peaks數量及分布,Peak關聯基因的特征,聯合RNA-seq研究m6A甲基化與表達的關系。m6A研究思路m6A研究方案疾病樣本疾病樣本VS正常樣本RNA-seqMeRIP-seqm6A修飾圖譜分析m6A修飾差異基因分析差異表達基因m6A修飾特征分析差異表達基因關聯分析MeRIP-PCR、qPCR驗證方案一TCGA等數據庫篩選異常表達的m6A相關基因(疾病vs正常)臨床樣本qPCR驗證目標TCGA等數據庫篩選異常表達的m6A相關基因(疾病vs正常)臨床樣本qPCR驗證目標基因腫瘤細胞中干擾目標基因MTT、流式、transwell等檢測細胞增殖、凋亡、侵襲和遷移MeRIP-SeqRNA-seq篩選下游基因IP/pulldown驗證目標基因通過m6A調控下游基因研究案例研究案例一(m6A修飾圖譜分析)BerulavaT,RahmannS,RademacherK,Klein-HitpassL,HorsthemkeB:N6-adenosinemethylationinMiRNAs。PLoSOne2015,10(2):e0118438。在許多不同種類的RNA中,都已觀察到N6-腺苷(m6A)的甲基化,但其在microRNAs中還沒有被研究。研究者在FTO1C1,FTO2D4和FTO3C3細胞系中,通過敲除m6A甲基轉移酶FTO篩選到表達差異的microRNA,說明miRNA受m6A甲基化的調控。進一步通過MeRIP—Seq發現相當一部分的microRNA具有m6A修飾。通過motif分析,他們發現了區分甲基化和非甲基化microRNA的一致序列。該文章所述的表觀遺傳修飾在基因表達的轉錄后調控的復雜性上增加了一個新的層次。圖1FTO敲除對甲基化的miRNAs的穩定狀態的影響。研究案例二(機制研究)IF=13.2MaJZ,YangF,ZhouCC,LiuF,YuanJH,WangF,WangTT,XuQG,ZhouWP,SunSH:METTL14suppressesthemetastaticpotentialofhepatocellularcarcinomabymodulatingN6-methyladenosine-dependentprimaryMicroRNAprocessing。Hepatology2017,65(2):529-543。m6A修飾已被證明具有重要的生物學功能,但其在癌癥上的作用還未得到較好的研究。為探索m6A修飾是否參與肝癌的調控,作者利用試劑盒檢測發現m6A整體甲基化在肝癌下調,分離RNA做m6A免疫印跡驗證m6A水平在肝癌中下調。為研究哪些因子導致m6A在肝癌的下調,作者在20例肝癌及癌旁中檢測m6A甲基化酶和去甲基酶的表達,發現METTL14在肝癌顯著下調,進一步通過130例病人分析發現METTL14作為肝癌預后因子,細胞實驗發現其敲除可增強肝癌轉移。接下來作者研究METTL14抑制肝癌轉移的機制,由于已有研究顯示m6A修飾能夠增強DGCR8蛋白識別pri-miRNAs,促進miRNAs的成熟,因此作者在METTL14敲除細胞中檢測miRNA和pri—miRNAs的表達,發現miR—126下調。通過免疫沉淀反應發現METTL14與DGCR8依賴RNA相互作用,且CLIP實驗顯示DGCR8與m6A—RNA相互作用且敲除METTL14后結合作用降低,說明METTL14通過m6A修飾促進DGCR8識別pri—miR—126。最后細胞實驗證明MiR—126能夠回復METTL14的肝癌細胞轉移抑制功能,證明了METTL14通過m6A修飾促進miR—126加工,從而抑制肝癌細胞轉移。圖1METTL14在肝癌中下調圖2METTL14依賴的m6A通過DGCR8調控miR—126加工研究案例三(機制研究)IF=27。4ZhangS,ZhaoBS,ZhouA,LinK,ZhengS,LuZ,ChenY,SulmanEP,XieK,BoglerOetal:m6ADemethylaseALKBH5MaintainsTumorigenicityofGlioblastomaStem-likeCellsbySustainingFOXM1ExpressionandCellProliferationProgram。CancerCell2017,31(4):591—606e596。DNA甲基化異常是膠質瘤的表觀遺傳調控因子,但RNA甲基化在腫瘤包括惡性膠質瘤(GBM)中的調控還尚未清楚。為研究m6A調節可能導致GBM患者臨床療效不佳,作者通過TCGA數據庫,發現ALKBH5在惡性膠質瘤樣干細胞(GSCs)中高表達且與GBM病人不良預后相關,干擾ALKBH5降低GSCs細胞的自我更新能力且抑制GSCs增殖,進一步體內驗證敲除ALKBH5可抑制腫瘤生長。為研究ALKBH5的m6A作用機制,作者利用芯片和m6A—seq篩選到膠質瘤增殖相關的FOXM1,最后通過qPCR、WB、免疫熒光、核質分離WB/qPCR、RIP和MeRIP等實驗證明ALKBH5通過去甲基化初期轉錄本調節FOXM1在GSCs中的表達。為研究ALKBH5對FOXM1的作用是否受其他因子的調節,作者研究了FOXM1的鄰近基因,發現lncRNAFOXM1-AS與FOXM1序列互補,且共表達、共定位,進一步通過RIP,RNApulldown等實驗證明lncRNAFOXM1-AS促進ALKBH5和FOXM1初級轉錄本的相互作用。最后通過細胞實驗進一步驗證ALKBH5在lncRNAFOXM1—AS的作用下維持FOXM1的表達和細胞增殖程序,從而維持GSCs的干性。圖1ALKBH5敲除細胞中m6A修飾的特征和基因表達的變化ADDINEN.REFLIST1。 FuY,DominissiniD,RechaviG,HeC:Geneexpressionregulationmediatedthroughreversiblem(6)ARNAmethylation.NatRevGenet2014,15(5):293-306。2。 SchwartzS,MumbachMR,JovanovicM,WangT,MaciagK,BushkinGG,MertinsP,Ter—OvanesyanD,HabibN,CacchiarelliDetal:Perturbationofm6AwritersrevealstwodistinctclassesofmRNAmethylationatinternaland5'sites.CellRep2014,8(1):284—296。3. ZhaoX,YangY,SunBF,ShiY,YangX,XiaoW,HaoYJ,PingXL,ChenYS,WangWJetal:FTO-dependentdemethylationofN6-methyladenosineregulatesmRNAsplicingandisrequiredforadipogenesis。CellRes2014,24(12):1403-1419.4。 FuY,JiaG,PangX,WangRN,WangX,LiCJ,SmemoS,DaiQ,BaileyKA,NobregaMAetal:FTO-mediatedformationofN6-hydroxymethyladenosineandN6—formyladenosineinmammalianRNA.NatCommun2013,4:1798。5. DinaC,MeyreD,GallinaS,DurandE,KornerA,JacobsonP,CarlssonLM,KiessW,VatinV,LecoeurCetal:VariationinFTOcontributestochildhoodobesityandsevereadultobesity。NatGenet2007,39(6):724—726.6. BoisselS,ReishO,ProulxK,Kawagoe—TakakiH,SedgwickB,YeoGS,MeyreD,GolzioC,MolinariF,KadhomNetal:Loss—of—functionmutationinthedioxygenase—encodingFTOgenecausesseveregrowthretardationandmultiplemalformations.AmJHumGenet2009,85(1):106—111。7。 ZhengG,DahlJA,NiuY,FedorcsakP,HuangCM,LiCJ,VagboCB,ShiY,WangWL,SongSHetal:ALKBH5isamammalianRNAdemethylasethatimpactsRNAmetabolismandmousefertility.MolCell2013,49(1):18-29。8。 CienikovaZ,DambergerFF,HallJ,AllainFH,MarisC:Structuralandmechanisticinsightsintopoly(uridine)tractrecognitionbythehnRNPCRNArecognitionmotif。JAmChemSoc2014,136(41):14536-14544.9。 LiuN,DaiQ,ZhengG,HeC,ParisienM,PanT:N(6)-methyladenosine-dependentRNAstructuralswitchesregulateRNA-proteininteractions.Nature2015,518(7540):560-564。10. ZhaoBS,RoundtreeIA,HeC:Post-transcriptionalgeneregulationbymRNAmodifications.NatRevMolCellBiol2017,18(1):31-42.11. WangX,LuZ,GomezA,HonGC,YueY,HanD,FuY,ParisienM,DaiQ,JiaGetal:N6—methyladenosine—dependentregulationofmessengerRNAstability.Nature2014,505(7481):117-120。12。 FustinJM,DoiM,YamaguchiY,HidaH,NishimuraS,YoshidaM,IsagawaT,MoriokaMS,KakeyaH,ManabeIetal:RNA-methylation—dependentRNAprocessingcontrolsthespeedofthecircadianclock。Cell2013,155(4):793-806。13。 MolinieB,WangJ,LimKS,HillebrandR,LuZX,VanWittenbergheN,HowardBD,DaneshvarK,MullenAC,DedonPetal:m(6)A-LAIC-seqrevealsthecensusandcomplexityofthem(6)Aepitranscriptome.NatMethods2016,13(8):692-698.14. MeyerKD,PatilDP,ZhouJ,ZinovievA,SkabkinMA,ElementoO,PestovaTV,QianSB,JaffreySR:5'UTRm(6)APromotesCap-IndependentTranslation。Cell2015,163(4):999-1010.15。 AlarconCR,LeeH,GoodarziH,HalbergN,TavazoieSF:N6—methyladenosinemarksprimarymicroRNAsforprocessing.Nature2015,519(7544):482—485.16。 AlarconCR,GoodarziH,LeeH,LiuX,TavazoieS,TavazoieSF:HNRNPA2B1IsaMediatorofm(6)A—DependentNuclearRNAProcessingEvents.Cell2015,162(6):1299-1308。17. YangY,FanX,MaoM,SongX,WuP,ZhangY,JinY,ChenLL,WangY,WongCCetal:ExtensivetranslationofcircularRNAsdrivenbyN6—methyladenosine.CellRes2017,27(5):626-641.18. YangY,HuangW,HuangJT,ShenF,XiongJ,YuanEF,QinSS,ZhangM,FengYQ,YuanBFetal:IncreasedN6—methyladenosineinHumanSpermRNAasaRiskFactorforAsthenozoospermia.SciRep2016,6:24345.19。 XuK,YangY,FengGH,SunBF,ChenJQ,LiYF,ChenYS,ZhangXX,WangCX,JiangLYetal:Mettl3—media

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論