2021-2022學年湖北省荊州市成豐學校高三第五次模擬考試數學試卷含解析_第1頁
2021-2022學年湖北省荊州市成豐學校高三第五次模擬考試數學試卷含解析_第2頁
2021-2022學年湖北省荊州市成豐學校高三第五次模擬考試數學試卷含解析_第3頁
2021-2022學年湖北省荊州市成豐學校高三第五次模擬考試數學試卷含解析_第4頁
2021-2022學年湖北省荊州市成豐學校高三第五次模擬考試數學試卷含解析_第5頁
免費預覽已結束,剩余14頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=02.已知是等差數列的前項和,,,則()A.85 B. C.35 D.3.函數()的圖像可以是()A. B.C. D.4.已知函數,若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)5.下列函數中,值域為的偶函數是()A. B. C. D.6.已知,,為圓上的動點,,過點作與垂直的直線交直線于點,若點的橫坐標為,則的取值范圍是()A. B. C. D.7.定義在R上的函數,,若在區間上為增函數,且存在,使得.則下列不等式不一定成立的是()A. B.C. D.8.橢圓是日常生活中常見的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個角度,水面的邊界即是橢圓.現有一高度為12厘米,底面半徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計),在玻璃杯傾斜的過程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是()A. B. C. D.9.若復數滿足,則()A. B. C. D.10.已知某口袋中有3個白球和個黑球(),現從中隨機取出一球,再換回一個不同顏色的球(即若取出的是白球,則放回一個黑球;若取出的是黑球,則放回一個白球),記換好球后袋中白球的個數是.若,則=()A. B.1 C. D.211.在區間上隨機取一個數,使得成立的概率為等差數列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.1112.已知函數的圖像與一條平行于軸的直線有兩個交點,其橫坐標分別為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.展開式中的系數為________.14.已知f(x)為偶函數,當x≤0時,f(x)=e-x-1-x,則曲線y=f(x)15.已知三棱錐中,,,,且二面角的大小為,則三棱錐外接球的表面積為__________.16.若函數的圖像向左平移個單位得到函數的圖像.則在區間上的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點.(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.18.(12分)已知橢圓經過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.19.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.20.(12分)已知在中,角,,的對邊分別為,,,的面積為.(1)求證:;(2)若,求的值.21.(12分)已知函數(1)當時,若恒成立,求的最大值;(2)記的解集為集合A,若,求實數的取值范圍.22.(10分)已知.(1)若是上的增函數,求的取值范圍;(2)若函數有兩個極值點,判斷函數零點的個數.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標準方程中的“1”轉化成“1”即可求出漸進方程.屬于基礎題.2.B【解析】

將已知條件轉化為的形式,求得,由此求得.【詳解】設公差為,則,所以,,,.故選:B【點睛】本小題主要考查等差數列通項公式的基本量計算,考查等差數列前項和的計算,屬于基礎題.3.B【解析】

根據,可排除,然后采用導數,判斷原函數的單調性,可得結果.【詳解】由題可知:,所以當時,,又,令,則令,則所以函數在單調遞減在單調遞增,故選:B【點睛】本題考查函數的圖像,可從以下指標進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調性;(5)值域,屬基礎題.4.C【解析】

利用導數求得在上遞增,結合與圖象,判斷出的大小關系,由此比較出的大小關系.【詳解】因為,所以在上單調遞增;在同一坐標系中作與圖象,,可得,故.故選:C【點睛】本小題主要考查利用導數研究函數的單調性,考查利用函數的單調性比較大小,考查數形結合的數學思想方法,屬于中檔題.5.C【解析】試題分析:A中,函數為偶函數,但,不滿足條件;B中,函數為奇函數,不滿足條件;C中,函數為偶函數且,滿足條件;D中,函數為偶函數,但,不滿足條件,故選C.考點:1、函數的奇偶性;2、函數的值域.6.A【解析】

由題意得,即可得點M的軌跡為以A,B為左、右焦點,的雙曲線,根據雙曲線的性質即可得解.【詳解】如圖,連接OP,AM,由題意得,點M的軌跡為以A,B為左、右焦點,的雙曲線,.故選:A.【點睛】本題考查了雙曲線定義的應用,考查了轉化化歸思想,屬于中檔題.7.D【解析】

根據題意判斷出函數的單調性,從而根據單調性對選項逐個判斷即可.【詳解】由條件可得函數關于直線對稱;在,上單調遞增,且在時使得;又,,所以選項成立;,比離對稱軸遠,可得,選項成立;,,可知比離對稱軸遠,選項成立;,符號不定,,無法比較大小,不一定成立.故選:.【點睛】本題考查了函數的基本性質及其應用,意在考查學生對這些知識的理解掌握水平和分析推理能力.8.C【解析】

根據題意可知當玻璃杯傾斜至杯中水剛好不溢出時,水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質即可確定此時橢圓的離心率,進而確定離心率的取值范圍.【詳解】當玻璃杯傾斜至杯中水剛好不溢出時,水面邊界所形成橢圓的離心率最大.此時橢圓長軸長為,短軸長為6,所以橢圓離心率,所以.故選:C【點睛】本題考查了橢圓的定義及其性質的簡單應用,屬于基礎題.9.C【解析】

化簡得到,,再計算復數模得到答案.【詳解】,故,故,.故選:.【點睛】本題考查了復數的化簡,共軛復數,復數模,意在考查學生的計算能力.10.B【解析】由題意或4,則,故選B.11.D【解析】

由題意,本題符合幾何概型,只要求出區間的長度以及使不等式成立的的范圍區間長度,利用幾何概型公式可得概率,即等差數列的公差,利用條件,求得,從而求得,解不等式求得結果.【詳解】由題意,本題符合幾何概型,區間長度為6,使得成立的的范圍為,區間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點睛】該題考查的是有關幾何概型與等差數列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數列的通項公式,屬于基礎題目.12.A【解析】

畫出函數的圖像,函數對稱軸方程為,由圖可得與關于對稱,即得解.【詳解】函數的圖像如圖,對稱軸方程為,,又,由圖可得與關于對稱,故選:A【點睛】本題考查了正弦型函數的對稱性,考查了學生綜合分析,數形結合,數學運算的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.30【解析】

先將問題轉化為二項式的系數問題,利用二項展開式的通項公式求出展開式的第項,令的指數分別等于2,4,求出特定項的系數.【詳解】由題可得:展開式中的系數等于二項式展開式中的指數為2和4時的系數之和,由于二項式的通項公式為,令,得展開式的的系數為,令,得展開式的的系數為,所以展開式中的系數,故答案為30.【點睛】本題考查利用二項式展開式的通項公式解決二項展開式的特定項的問題,考查學生的轉化能力,屬于基礎題.14.y=2x【解析】試題分析:當x>0時,-x<0,則f(-x)=ex-1+x.又因為f(x)為偶函數,所以f(x)=f(-x)=ex-1+x,所以f'【考點】函數的奇偶性、解析式及導數的幾何意義【知識拓展】本題題型可歸納為“已知當x>0時,函數y=f(x),則當x<0時,求函數的解析式”.有如下結論:若函數f(x)為偶函數,則當x<0時,函數的解析式為y=-f(x);若f(x)為奇函數,則函數的解析式為y=-f(-x).15.【解析】

設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,將的長度求出或用球半徑表示,再利用余弦定理即可建立方程解得半徑.【詳解】設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,如圖所示因為,,所以,,,又二面角的大小為,則,,所以,設外接球半徑為R,則,,在中,由余弦定理,得,即,解得,故三棱錐外接球的表面積.故答案為:.【點睛】本題考查三棱錐外接球的表面積問題,解決此類問題一定要數形結合,建立關于球的半徑的方程,本題計算量較大,是一道難題.16.【解析】

注意平移是針對自變量x,所以,再利用整體換元法求值域(最值)即可.【詳解】由已知,,,又,故,,所以的最小值為.故答案為:.【點睛】本題考查正弦型函數在給定區間上的最值問題,涉及到圖象的平移變換、輔助角公式的應用,是一道基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)詳見解析;(Ⅱ).【解析】

(Ⅰ)由正方形的性質得出,由平面得出,進而可推導出平面,再利用面面垂直的判定定理可證得結論;(Ⅱ)取的中點,連接、,以、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法能求出二面角的余弦值.【詳解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中點,連接、,是正方形,易知、、兩兩垂直,以點為坐標原點,以、、所在直線分別為、、軸建立如圖所示的空間直角坐標系,在中,,,,、、、,設平面的一個法向量,,,由,得,令,則,,.設平面的一個法向量,,,由,得,取,得,,得.,二面角為鈍二面角,二面角的余弦值為.【點睛】本題考查面面垂直的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.18.(1);(2)見解析.【解析】

(1)根據題意得出關于、、的方程組,解出、的值,進而可得出橢圓的標準方程;(2)設點、、,設直線的方程為,將該直線的方程與橢圓的方程聯立,并列出韋達定理,由向量的坐標運算可求得點的坐標表達式,并代入韋達定理,消去,可得出點的橫坐標,進而可得出結論.【詳解】(1)由題意得,解得,.所以橢圓的方程是;(2)設直線的方程為,、、,由,得.,則有,,由,得,由,可得,,,綜上,點在定直線上.【點睛】本題考查橢圓方程的求解,同時也考查了點在定直線上的證明,考查計算能力與推理能力,屬于中等題.19..【解析】試題分析:,所以.試題解析:B.因為,所以.20.(1)證明見解析;(2).【解析】

(1)利用,利用正弦定理,化簡即可證明(2)利用(1),得到當時,,得出,得出,然后可得【詳解】證明:(1)據題意,得,∴,∴.又∵,∴,∴.解:(2)由(1)求解知,.∴當時,.又,∴,∴,∴.【點睛】本題考查正弦與余弦定理的應用,屬于基礎題21.(1);(2)【解析】

(1)當時,由題意得到,令,分類討論求得函數的最小值,即可求得的最大值.(2)由時,不等式恒成立,轉化為在上恒成立,得到,即可求解.【詳解】(1)由題意,當時,由,可得,令,則只需,當時,;當時,;當時,;故當時,取得最小值,即的最大值為.(2)依題意,當時,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,則,所以,所示實數的取值范圍是.【點睛】本題主要考查了含絕對值的不等式的解法,以及不等式的恒成立問題的求解與應用,著重考查了轉化思想,以及推理與計算能力.22.(1)(2)三個零點【解析】

(1)由題意知恒成立,構造函數,對函數求導,求得函數最值,進而得到結

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論