2022年浙江省杭州市城區六校聯考數學九年級上冊期末綜合測試試題含解析_第1頁
2022年浙江省杭州市城區六校聯考數學九年級上冊期末綜合測試試題含解析_第2頁
2022年浙江省杭州市城區六校聯考數學九年級上冊期末綜合測試試題含解析_第3頁
2022年浙江省杭州市城區六校聯考數學九年級上冊期末綜合測試試題含解析_第4頁
2022年浙江省杭州市城區六校聯考數學九年級上冊期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.方程是關于的一元二次方程,則A. B. C. D.2.拋物線的頂點坐標是()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(1,2)3.將拋物線y=x2向左平移2個單位,再向下平移5個單位,平移后所得新拋物線的表達式為()A.y=(x+2)2﹣5 B.y=(x+2)2+5 C.y=(x﹣2)2﹣5 D.y=(x﹣2)2+54.如圖是一個半徑為5cm的圓柱形輸油管的橫截面,若油面寬AB=8cm,則油面的深度為()A.1cm B.1.5cm C.2cm D.2.5cm5.一個不透明的袋中裝有2個紅球和4個黃球,這些球除顏色外完全相同.從袋中隨機摸出一個球,摸到黃球的概率是()A. B. C. D.6.已知如圖1所示的四張牌,若將其中一張牌旋轉180°后得到圖1.則旋轉的牌是()A. B. C. D.7.已知一次函數y=kx+b的圖象如圖,那么正比例函數y=kx和反比例函數y=在同一坐標系中的圖象的形狀大致是()A. B.C. D.8.如圖,,直線與這三條平行線分別交于點和點.已知AB=1,BC=3,DE=1.2,則DF的長為()A. B. C. D.9.如圖,△ABC≌△AEF且點F在BC上,若AB=AE,∠B=∠E,則下列結論錯誤的是()A.AC=AF B.∠AFE=∠BFE C.EF=BC D.∠EAB=∠FAC10.如圖,已知OB為⊙O的半徑,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,則CD長為()A.3cm B.6cm C.12cm D.24cm二、填空題(每小題3分,共24分)11.如圖,AB為的直徑,弦CD⊥AB于點E,點F在圓上,且=,BE=2,CD=8,CF交AB于點G,則弦CF的長度為__________,AG的長為____________.12.已知甲、乙兩種棉花的纖維長度的平均數相等,若甲種棉花的纖維長度的方差,乙種棉花的纖維長度的方差,則甲、乙兩種棉花質量較好的是▲.13.如圖,在正方形ABCD的外側,作等邊△ABE,則∠BFC=_________°14.如圖,AB是⊙O的直徑,C、D為⊙O上的點,P為圓外一點,PC、PD均與圓相切,設∠A+∠B=130°,∠CPD=β,則β=_____.15.如圖,拋物線向右平移個單位得到拋物線___________.16.一布袋里裝有4個紅球、5個黃球、6個黑球,這些球除顏色外其余都相同,那么從這個布袋里摸出一個黃球的概率為__________.17.方程2x2-6x-1=0的負數根為___________.18.如圖,在矩形ABCD中,∠ABC的角平分線BE與AD交于點E,∠BED的角平分線EF與DC交于點F,若AB=8,DF=3FC,則BC=__________.三、解答題(共66分)19.(10分)閱讀材料,解答問題:觀察下列方程:①;②;③;…;(1)按此規律寫出關于x的第4個方程為,第n個方程為;(2)直接寫出第n個方程的解,并檢驗此解是否正確.20.(6分)如圖,某居民樓的前面有一圍墻,在點處測得樓頂的仰角為,在處測得樓頂的仰角為,且的高度為2米,之間的距離為20米(,,在同一條直線上).(1)求居民樓的高度.(2)請你求出、兩點之間的距離.(參考數據:,,,結果保留整數)21.(6分)為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設計圖,其中MN是水平線,MN∥AD,AD⊥DE,CF⊥AB,垂足分別為D,F,坡道AB的坡度=1:3,AD=9米,點C在DE上,CD=0.5米,CD是限高標志牌的高度(標志牌上寫有:限高米).如果進入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結果精確到0.1米,參考數據:≈1.41,≈1.73,≈3.16)22.(8分)某商品的進價為每件50元,售價為每件60元,每個月可賣出200件.如果每件商品的售價上漲1元,則每個月少賣10件(每件售價不能高于72元).設每件商品的售價上漲x元(x為整數),每個月的銷售利潤為y元,(1)求y與x的函數關系式,并直接寫出x的取值范圍;(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大月利潤是多少元?23.(8分)解下列方程(1)x2+4x﹣1=0(2)(y+2)2=(3y﹣1)224.(8分)知識改變世界,科技改變生活.導航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達A地后,發現C地恰好在A地的正北方向,且距離A地13千米,導航顯示車輛應沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達C地,求B、C兩地的距離.(參考數據:sin53°≈,cos53°≈,tan53°≈)25.(10分)“脫貧攻堅戰”打響以來,全國貧困人口減少了8000多萬人。某市為了扎實落實脫貧攻堅中“兩不愁,三保障”的住房保障工作,2017年投入5億元資金,之后投入資金逐年增長,2019年投入7.2億元資金用于保障性住房建設.(1)求該市這兩年投入資金的年平均增長率.(2)2020年該市計劃保持相同的年平均増長率投入資金用于保障性住房建設,如果每戶能得到保障房補助款3萬元,則2020年該市能夠幫助多少戶建設保障性住房?26.(10分)如圖,在矩形ABCD中,AB=4,BC=6,點M是BC的中點.(1)在AM上求作一點E,使△ADE∽△MAB(尺規作圖,不寫作法);(2)在(1)的條件下,求AE的長.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據一元二次方程的定義,得到關于的不等式,解之即可.【詳解】解:根據題意得:,解得:,故選.【點睛】本題考查一元二次方程的定義,解題關鍵是正確掌握一元二次方程的定義.2、D【分析】根據頂點式,頂點坐標是(h,k),即可求解.【詳解】∵頂點式,頂點坐標是(h,k),∴拋物線的頂點坐標是(1,2).故選D.3、A【分析】直接根據“上加下減,左加右減”的原則進行解答即可.【詳解】拋物線y=x2的頂點坐標為(0,0),先向左平移2個單位再向下平移1個單位后的拋物線的頂點坐標為(﹣2,﹣1),所以,平移后的拋物線的解析式為y=(x+2)2﹣1.故選A.【點睛】本題考查了二次函數的圖象與幾何變換,熟知函數圖象平移的法則是解答本題的關鍵.4、A【分析】過點O作OD⊥AB于點D,根據垂徑定理可求出AD的長,再在Rt△AOD中,利用勾股定理求出OD的長即可得到答案.【詳解】解:過點O作OD⊥AB于點D,∵AB=8cm,∴AD=AB=4cm,在Rt△AOD中,OD===2(cm),∴油面深度為:5-2=1(cm)故選:A.【點睛】本題考查了垂徑定理和勾股定理,根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.5、B【解析】試題分析:根據概率的求法,找準兩點:①全部等可能情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.因此,∵地口袋中共有2+4=6個球,其中黃球3個,∴隨機抽取一個球是黃球的概率是.故選B.考點:概率.6、A【解析】解:觀察發現,只有是中心對稱圖形,∴旋轉的牌是.故選A.7、C【解析】試題分析:如圖所示,由一次函數y=kx+b的圖象經過第一、三、四象限,可得k>1,b<1.因此可知正比例函數y=kx的圖象經過第一、三象限,反比例函數y=的圖象經過第二、四象限.綜上所述,符合條件的圖象是C選項.故選C.考點:1、反比例函數的圖象;2、一次函數的圖象;3、一次函數圖象與系數的關系8、B【分析】根據平行線分線段成比例定理即可解決問題.【詳解】解:,,即,,,故選.【點睛】本題考查平行線分線段成比例定理,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.9、B【分析】全等三角形的對應邊相等,對應角相等,△ABC≌△AEF,可推出AB=AE,∠B=∠E,AC=AF,EF=BC.【詳解】∵△ABC≌△AEF∴AB=AE,∠B=∠E,AC=AF,EF=BC故A,C選項正確.∵△ABC≌△AEF∴∠EAF=∠BAC∴∠EAB=∠FAC故D答案也正確.∠AFE和∠BFE找不到對應關系,故不一定相等.故選:B.【點睛】本題考查全等三角形的性質,全等三角形對應邊相等,對應角相等.10、C【分析】根據OB=10cm,OM:MB=4:1,可求得OM的長,再根據垂徑定理和勾股定理可計算出答案.【詳解】∵弦CD⊥OB于M,∴CM=DM=CD,∵OM:MB=4:1,∴OM=OB=8cm,∴CM=(cm),∴CD=2CM=12cm,故選:C.【點睛】本題考查了垂徑定理和勾股定理,垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條弧.二、填空題(每小題3分,共24分)11、;【分析】如圖(見解析),連接CO、DO,并延長DO交CF于H,由垂徑定理可知CE,在中,可以求出半徑CO的長;又由=和垂徑定理得,根據圓周角定理可得,從而可知,在中可求出FG,也就可求得CF的長度;在中利用勾股定理求出DH,再求出,同樣地,在中利用余弦函數求出OG,從而可求得.【詳解】,,,(垂徑定理)連接,設,則在中,解得,連接DO并延長交CF于H=,由垂徑定理可知,是所對圓周角,是所對圓心角,且=2,,由勾股定理得:,.【點睛】本題考查了垂徑定理、圓周角定理、直角三角形中的余弦三角函數,通過構造輔助線,利用垂徑定理和圓周角定理是解題關鍵.12、甲.【解析】方差的運用.【分析】方差就是和中心偏離的程度,用來衡量一批數據的波動大小(即這批數據偏離平均數的大小)在樣本容量相同的情況下,方差越大,說明數據的波動越大,越不穩定.由于,因此,甲、乙兩種棉花質量較好的是甲.13、1【解析】根據正方形的性質及等邊三角形的性質求出∠ADE=15°,∠DAC=45°,再求∠DFC,證△DCF?△BCF,可得∠BFC=∠DFC.【詳解】∵四邊形ABCD是正方形,

∴AB=AD=CD=BC,∠DCF=∠BCF=45°

又∵△ABE是等邊三角形,

∴AE=AB=BE,∠BAE=1°

∴AD=AE

∴∠ADE=∠AED,∠DAE=90°+1°=150°

∴∠ADE=(180°-150°)÷2=15°

又∵∠DAC=45°

∴∠DFC=45°+15°=1°在△DCF和△BCF中CD=BC∠DCF=∠BCF∴△DCF?△BCF∴∠BFC=∠DFC=1°

故答案為:1.【點睛】本題主要是考查了正方形的性質和等邊三角形的性質,本題的關鍵是求出∠ADE=15°.14、100°【分析】連結OC,OD,則∠PCO=90°,∠PDO=90°,可得∠CPD+∠COD=180°,根據OB=OC,OD=OA,可得∠BOC=180°?2∠B,∠AOD=180°?2∠A,則可得出與β的關系式.進而可求出β的度數.【詳解】連結OC,OD,∵PC、PD均與圓相切,∴∠PCO=90°,∠PDO=90°,∵∠PCO+∠COD+∠ODP+∠CPD=360°,∴∠CPD+∠COD=180°,∵OB=OC,OD=OA,∴∠BOC=180°﹣2∠B,∠AOD=180°﹣2∠A,∴∠COD+∠BOC+∠AOD=180°,∴180°﹣∠CPD+180°﹣2∠B+180°﹣2∠A=180°.∴∠CPD=100°,故答案為:100°.【點睛】本題利用了切線的性質,圓周角定理,四邊形的內角和為360度求解,解題的關鍵是熟練掌握切線的性質.15、【分析】先確定拋物線的頂點坐標為(0,2),再利用點平移的規律得到點(0,2)平移后所得對應點的坐標為(1,2),然后根據頂點式可得平移后的拋物線的解析式.【詳解】解:拋物線的頂點坐標為(0,2),把點(0,2)向右平移1個單位所得對應點的坐標為(1,2),∴平移后的拋物線的解析式是:;故答案為.【點睛】本題考查了二次函數圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通常可利用兩種方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.16、【分析】由于每個球被摸到的機會是均等的,故可用概率公式解答.【詳解】解:∵布袋里裝有4個紅球、5個黃球、6個黑球,∴P(摸到黃球)=;故答案為:.【點睛】此題考查了概率公式,要明確:如果在全部可能出現的基本事件范圍內構成事件A的基本事件有a個,不構成事件A的事件有b個,則出現事件A的概率為:P(A)=.17、【分析】先計算判別式的值,再利用求根公式法解方程,然后找出負數根即可.【詳解】△=(﹣6)2﹣4×2×(﹣1)=44,x==,所以x1=>1,x2=<1.即方程的負數根為x=.故答案為x=.【點睛】本題考查了公式法解一元二次方程:用求根公式解一元二次方程的方法是公式法.18、6+1.【分析】先延長EF和BC,交于點G,再根據條件可以判斷三角形ABE為等腰直角三角形,并求得其斜邊BE的長,然后根據條件判斷三角形BEG為等腰三角形,最后根據△EFD∽△GFC得出比例式,DF=3FC計算得出CG與DE的倍數關系,并根據BG=BC+CG進行計算即可.【詳解】解:延長EF和BC,交于點G∵矩形ABCD中,∠B的角平分線BE與AD交于;∴∠ABE=∠AEB=45°,∴AB=AE=8,∴直角三角形ABE中,BE=8,又∵∠BED的角平分線EF與DC交于點F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=8,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC∵DF=3FC,設CG=x,DE=3x,則AD=8+3x=BC∵BG=BC+CG∴8=8+3x+x解得x=1-1,∴BC=8+3(1-1)=6+1,故答案為:6+1.【點睛】本題主要考查矩形的性質、相似三角形性質和判定以及等腰三角形的性質,解決問題的關鍵是得出BG=BE,從而進行計算.三、解答題(共66分)19、(1)9,2n+1;(2)2n+1,見解析【分析】(1)觀察一系列等式左邊分子為連續兩個整數的積,右邊為從3開始的連續奇數,即可寫出第4個方程及第n個方程;(2)歸納總結即可得到第n個方程的解為n與n+1,代入檢驗即可.【詳解】解:(1)x+=x+=9,x+=2n+1;故答案為:x+=9;x+=2n+1.(2)x+=2n+1,觀察得:x1=n,x2=n+1,將x=n代入方程左邊得:n+n+1=2n+1;右邊為2n+1,左邊=右邊,即x=n是方程的解;將n+1代入方程左邊得:n+1+n=2n+1;右邊為2n+1,左邊=右邊,即x=n+1是方程的解,則經檢驗都為原分式方程的解.【點睛】本題主要考查的是分式方程的解,根據所給方程找出規律是解題的關鍵.20、(1)居民樓的高約為22米;(2)、之間的距離約為48米【分析】(1)過點作,垂足為,設為在中及中,根據三角函數即可求得答案;(2)方法一:在中,根據,即可求得AE的值.方法二:在中,根據,即可求得AE的值.【詳解】(1)如圖,過點作,垂足為,∴四邊形為矩形,∴,.設為.在中,,∴,∴.在中,,,∵,∴,∴.答:居民樓的高約為22米.(2)方法一:由(1)可得.在中,,∴,∴,即、之間的距離約為46米.方法二:由(1)得.在中,,∴,∴,即、之間的距離約為48米.(注:此題學生算到46或48都算正確)【點睛】本題考查了解直角三角形的應用,構造直角三角形,得出三角函數的關系是解題的關鍵.21、2.1.【分析】據題意得出tanB=,即可得出tanA,在Rt△ADE中,根據勾股定理可求得DE,即可得出∠FCE的正切值,再在Rt△CEF中,設EF=x,即可求出x,從而得出CF=1x的長.【詳解】解:據題意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2設EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面沒有“設x>0”,則此處應“x=±,舍負”),∴CF=1x=≈2.1,∴該停車庫限高2.1米.【點睛】點評:本題考查了解直角三角形的應用,坡面坡角問題和勾股定理,解題的關鍵是坡度等于坡角的正切值.22、(1)y=-10x2+100x+1,0<x≤2(2)每件商品的售價定為5元時,每個月可獲得最大利潤,最大月利潤是3元【解析】解:(1)設每件商品的售價上漲x元(x為正整數),則每件商品的利潤為:(60-50+x)元,總銷量為:(200-10x)件,商品利潤為:y=(60-50+x)(200-10x)=-10x2+100x+1.∵原售價為每件60元,每件售價不能高于72元,∴0<x≤2.(2)∵y=-10x2+100x+1=-10(x-5)2+3,∴當x=5時,最大月利潤y=3.答:每件商品的售價定為5元時,每個月可獲得最大利潤,最大月利潤是3元.(1)根據題意,得出每件商品的利潤以及商品總的銷量,即可得出y與x的函數關系式.(2)根據題意利用配方法得出二次函數的頂點形式(或用公式法),從而得出當x=5時得出y的最大值.23、(1)x1=﹣2+,x2=﹣2﹣;(2)y1=﹣,y2=.【解析】(1)把常數項1移項后,在左右兩邊同時加上4配方求解.(2)整理后分解因式,即可得出兩個一元一次方程,求出方程的解即可;【詳解】(1)移項可得:x2+4x=1,兩邊加4可得:x2+4x+4=4+1,配方可得:(x+2)2=5,兩邊開方可得:x+2=±,∴x1=﹣2+,x2=﹣2﹣;(2)移項可得:(y+2)2﹣(3y﹣1)2=0,分解因式可得:(y+2+3y﹣1)(y+2﹣3y+1)=0,即(4y+1)(3﹣2y)=0,∴4y+1=0或3﹣2y=0,∴y1=﹣,x2=.【點睛】本題考查了解一元二次方程,能選擇適當的方法解一元二次方程是解題的關鍵.24、(20-5)千米.【解析】分析:作BD⊥AC,設AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立關于x的方程,解之求得x的值,最后由BC=可得答案.詳解:過點B作BD⊥AC,依題可得:∠BAD=60°,∠CBE=37°,AC=13(千米),∵BD⊥AC,∴∠ABD=30°,∠CBD=53°,在Rt△ABD中,設AD=x,∴tan∠ABD=即tan30°=,∴BD=x,在Rt△DCB中,∴tan∠CBD=即tan53°=,∴CD=∵CD+AD=AC,∴x+=13,解得,x=∴BD=12-,在Rt△BDC中,∴cos∠CBD=tan60°=,即:BC=(千米),故B、C兩地的距離為(20-5)千米.點睛:此題考查了方向角問題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論