2022年陜西省西安市信德中學數學九年級上冊期末復習檢測模擬試題含解析_第1頁
2022年陜西省西安市信德中學數學九年級上冊期末復習檢測模擬試題含解析_第2頁
2022年陜西省西安市信德中學數學九年級上冊期末復習檢測模擬試題含解析_第3頁
2022年陜西省西安市信德中學數學九年級上冊期末復習檢測模擬試題含解析_第4頁
2022年陜西省西安市信德中學數學九年級上冊期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列結論正確的是()A.三角形的外心是三條角平分線的交點B.平分弦的直線垂直于弦C.弦的垂直平分線必平分弦所對的兩條弧D.直徑是圓的對稱軸2.如圖,是一個幾何體的三視圖,則這個幾何體是()A.長方體 B.圓柱體 C.球體 D.圓錐體3.二次函數的圖像如圖所示,下面結論:①;②;③函數的最小值為;④當時,;⑤當時,(、分別是、對應的函數值).正確的個數為()A. B. C. D.4.不等式的解為()A. B. C. D.5.如圖,正比例函數的圖像與反比例函數的圖象相交于A、B兩點,其中點A的橫坐標為2,當時,x的取值范圍是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>26.下列計算正確的是()A.; B.; C.; D..7.下列事件是必然事件的是()A.拋擲一枚硬幣四次,有兩次正面朝上B.打開電視頻道,正在播放《在線體育》C.射擊運動員射擊一次,命中十環D.方程x2﹣2x﹣1=0必有實數根8.如圖,中,.將繞點順時針旋轉得到,邊與邊交于點(不在上),則的度數為()A. B. C. D.9.如圖,△ABC中,∠C=90°,∠B=30°,AC=,D、E分別在邊AC、BC上,CD=1,DE∥AB,將△CDE繞點C旋轉,旋轉后點D、E對應的點分別為D′、E′,當點E′落在線段AD′上時,連接BE′,此時BE′的長為()A.2 B.3 C.2 D.310.在同一平面直角坐標系中,函數與的圖象可能是()A. B.C. D.二、填空題(每小題3分,共24分)11.如圖,在直角坐標系中,正方形ABCD的邊BC在x軸上,其中點A的坐標為(1,2),正方形EFGH的邊FG在x軸上,且H的坐標為(9,4),則正方形ABCD與正方形EFGH的位似中心的坐標是_____.12.關于x的方程的兩個根是﹣2和1,則nm的值為_____.13.在中,,,,則的長是__________.14.一家鞋店對上一周某品牌女鞋的銷量統計如下:尺碼(厘米)2222.52323.52424.525銷量(雙)12511731該店決定本周進貨時,多進一些尺碼為23.5厘米的鞋,影響鞋店決策的統計量是___________.15.對于實數,定義運算“◎”如下:◎.若◎,則_____.16.如圖,是⊙的一條弦,⊥于點,交⊙于點,連接.如果,,那么⊙的半徑為_________.17.已知二次函數的圖象如圖所示,則下列四個代數式:①,②,③;④中,其值小于的有___________(填序號).18.已知圓的半徑為,點在圓外,則長度的取值范圍為___________.三、解答題(共66分)19.(10分)如圖,為測量一條河的寬度,某學習小組在河南岸的點A測得河北岸的樹C在點A的北偏東60°方向,然后向東走10米到達B點,測得樹C在點B的北偏東30°方向,試根據學習小組的測量數據計算河寬.20.(6分)如圖,是的直徑,切于點,交于點,平分,連接.(1)求證:;(2)若,,求的半徑.21.(6分)如圖,在平面直角坐標系中,已知三個頂點的坐標分別是,,.(1)請畫出關于軸對稱的;(2)以點為位似中心,相似比為1:2,在軸右側,畫出放大后的;22.(8分)科研人員在測試火箭性能時,發現火箭升空高度與飛行時間之間滿足二次函數.(1)求該火箭升空后飛行的最大高度;(2)點火后多長時間時,火箭高度為.23.(8分)如圖,點D是AC上一點,BE//AC,AE分別交BD、BC于點F、G,若∠1=∠2,線段BF、FG、FE之間有怎樣的關系?請說明理由.24.(8分)如圖,⊙O的直徑AB為10cm,弦BC為5cm,D、E分別是∠ACB的平分線與⊙O,AB的交點,P為AB延長線上一點,且PC=PE.(1)求AC、AD的長;(2)試判斷直線PC與⊙O的位置關系,并說明理由.25.(10分)如圖,是的直徑,,,連接交于點.(1)求證:是的切線;(2)若,求的長.26.(10分)已知反比例函數的圖象經過點(2,﹣2).(I)求此反比例函數的解析式;(II)當y≥2時,求x的取值范圍.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據三角形的外心定義可以對A判斷;根據垂徑定理的推論即可對B判斷;根據垂徑定理即可對C判斷;根據對稱軸是直線即可對D判斷.【詳解】A.三角形的外心是三邊垂直平分線的交點,所以A選項錯誤;B.平分弦(不是直徑)的直徑垂直于弦,所以B選項錯誤;C.弦的垂直平分線必平分弦所對的兩條弧,所以C選項正確;D.直徑所在的直線是圓的對稱軸,所以D選項錯誤.故選:C.【點睛】本題考查了三角形的外接圓與外心、垂徑定理、圓的有關概念,解決本題的關鍵是掌握圓的知識.2、B【分析】根據三視圖的規律解答:主視圖表示由前向后觀察的物體的視圖;左視圖表示在側面由左向右觀察物體的視圖,俯視圖表示由上向下觀察物體的視圖,由此解答即可.【詳解】解:∵該幾何體的主視圖和左視圖都為長方形,俯視圖為圓∴這個幾何體為圓柱體故答案是:B.【點睛】本題主要考察簡單幾何體的三視圖,熟練掌握簡單幾何體的三視圖是解題的關鍵.3、C【分析】由拋物線開口方向可得到a>0;由拋物線過原點得c=0;根據頂點坐標可得到函數的最小值為-3;根據當x<0時,拋物線都在x軸上方,可得y>0;由圖示知:0<x<2,y隨x的增大而減小;【詳解】解:①由函數圖象開口向上可知,,故此選項正確;②由函數的圖像與軸的交點在可知,,故此選項正確;③由函數的圖像的頂點在可知,函數的最小值為,故此選項正確;④因為函數的對稱軸為,與軸的一個交點為,則與軸的另一個交點為,所以當時,,故此選項正確;⑤由圖像可知,當時,隨著的值增大而減小,所以當時,,故此選項錯誤;其中正確信息的有①②③④.故選:C.【點睛】本題考查了二次函數的圖象與系數的關系:二次函數y=ax2+bx+c(a≠0)的圖象為拋物線,當a>0,拋物線開口向上;對稱軸為直線x=,;拋物線與y軸的交點坐標為(0,c);當b2-4ac>0,拋物線與x軸有兩個交點;當b2-4ac=0,拋物線與x軸有一個交點;當b2-4ac<0,拋物線與x軸沒有交點.4、B【分析】根據一元一次不等式的解法進行求解即可.【詳解】解:移項得,,合并得,,系數化為1得,.故選:B.【點睛】本題考查一元一次不等式的解法,屬于基礎題型,明確解法是關鍵.5、D【分析】先根據反比例函數與正比例函數的性質求出B點坐標,再由函數圖象即可得出結論.【詳解】解:∵反比例函數與正比例函數的圖象均關于原點對稱,

∴A、B兩點關于原點對稱,

∵點A的橫坐標為1,∴點B的橫坐標為-1,

∵由函數圖象可知,當-1<x<0或x>1時函數y1=k1x的圖象在的上方,

∴當y1>y1時,x的取值范圍是-1<x<0或x>1.

故選:D.【點睛】本題考查的是反比例函數與一次函數的交點問題,能根據數形結合求出y1>y1時x的取值范圍是解答此題的關鍵.6、B【解析】分析:分別根據次根式的加減運算法則以及合并同類項的法則、冪的乘方與積的乘方法則及同底數冪的除法法則對各選項進行逐一判斷即可.詳解:A.與不是同類項,不能合并,故本選項錯誤;B.,故本選項正確;C.,故本選項錯誤;D.,故本選項錯誤.故選:B.點睛:此題考查了二次根式的加減運算以及合并同類項、積的乘方運算和同底數冪的除法法則運算等知識,正確掌握運算法則是解題的關鍵.7、D【分析】根據必然事件的定義逐項進行分析即可做出判斷,必然事件是一定會發生的事件.【詳解】A、拋擲一枚硬幣,四次中有兩次正面朝上是隨機事件,故本選項錯誤;B、打開電視頻道,正在播放《在線體育》是隨機事件,故本選項錯誤;C、射擊運動員射擊一次,命中十環是隨機事件,故本選項錯誤;D.方程中必有實數根,是必然事件,故本選項正確.故選:D.【點睛】解決本題要正確理解必然事件、不可能事件、隨機事件的概念,理解概念是解決基礎題的主要方法.用到的知識點有:必然事件指在一定條件下一定發生的事件;不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.8、D【分析】根據旋轉的性質可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性質即可求得的度數.【詳解】∵△A′OB′是由△AOB繞點O順時針旋轉得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB繞點O順時針旋轉52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故選D.【點睛】本題主要考查了旋轉的性質,熟知旋轉的性質是解決問題的關鍵.9、B【分析】如圖,作CH⊥BE′于H,設AC交BE′于O.首先證明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解決問題.【詳解】解:如圖,作CH⊥BE′于H,設AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴=,∠CDE=∠CAB=∠D′=60°∴=,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC=,∠ABC=30°,∴AB=2AC=2,BC=AC=,∵DE∥AB,∴=,∴=,∴CE=,∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=∴E′H=CE′=,CH=HE′=,∴BH===∴BE′=HE′+BH=3,故選:B.【點睛】本題考查了相似三角形的綜合應用題,涉及了旋轉的性質、平行線分線段成比例、相似三角形的性質與判定等知識點,解題的關鍵是靈活運用上述知識點進行推理求導.10、D【分析】分兩種情況討論,當k>0時,分析出一次函數和反比例函數所過象限;再分析出k<0時,一次函數和反比例函數所過象限,符合題意者即為正確答案.【詳解】當時,一次函數經過一、二、三象限,反比例函數經過一、三象限;當時,一次函數經過一、二、四象限,反比例函數經過二、四象限.觀察圖形可知,只有A選項符合題意.

故選:D.【點睛】本題主要考查了反比例函數的圖象和一次函數的圖象,熟悉兩函數中k和b的符號對函數圖象的影響是解題的關鍵.二、填空題(每小題3分,共24分)11、(﹣3,0)或(,)【分析】連接HD并延長交x軸于點P,根據正方形的性質求出點D的坐標為(3,2),證明△PCD∽△PGH,根據相似三角形的性質求出OP,另一種情況,連接CE、DF交于點P,根據待定系數法分別求出直線DF解析式和直線CE解析式,求出兩直線交點,得到答案.【詳解】解:連接HD并延長交x軸于點P,則點P為位似中心,∵四邊形ABCD為正方形,點A的坐標為(1,2),∴點D的坐標為(3,2),∵DC//HG,∴△PCD∽△PGH,∴,即,解得,OP=3,∴正方形ABCD與正方形EFGH的位似中心的坐標是(﹣3,0),連接CE、DF交于點P,由題意得C(3,0),E(5,4),D(3,2),F(5,0),求出直線DF解析式為:y=﹣x+5,直線CE解析式為:y=2x﹣6,解得直線DF,CE的交點P為(,),所以正方形ABCD與正方形EFGH的位似中心的坐標是(,),故答案為:(﹣3,0)或(,).【點睛】本題考查的是位似變換的概念和性質、相似三角形的判定和性質,位似圖形的定義:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.12、﹣1【分析】由方程的兩根結合根與系數的關系可求出m、n的值,將其代入nm中即可求出結論.【詳解】解:∵關于x的方程的兩個根是﹣2和1,∴,∴m=2,n=﹣4,∴.故答案為:﹣1.【點睛】本題主要考查一元二次方程根與系數的關系,熟練掌握根與系數的關系是解題的關鍵.13、1【分析】根據∠A的余弦值列出比例式即可求出AC的長.【詳解】解:在Rt△ABC中,,∴AC=故答案為1.【點睛】此題考查是已知一個角的余弦值,求直角三角形的邊長,掌握余弦的定義是解決此題的關鍵.14、眾數【解析】平均數、中位數、眾數是描述一組數據集中程度的統計量;方差、標準差是描述一組數據離散程度的統計量.銷量大的尺碼就是這組數據的眾數.【詳解】由于眾數是數據中出現次數最多的數,故應最關心這組數據中的眾數.故答案為眾數.【點睛】此題主要考查統計的有關知識,主要包括平均數、中位數、眾數、方差的意義.熟練掌握均數、中位數、眾數、方差的意義是解答本題的關鍵.15、-3或4【分析】利用新定義得到,整理得到,然后利用因式分解法解方程.【詳解】根據題意得,,,,或,所以.故答案為或.【點睛】本題考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.16、5【分析】由垂徑定理可知,在中利用勾股定理即可求出半徑.【詳解】設⊙的半徑為r∵是⊙的一條弦,⊥,∴在中∵∴∴故答案為5【點睛】本題主要考查勾股定理及垂徑定理,掌握勾股定理及垂徑定理的內容是解題的關鍵.17、②④【分析】①根據函數圖象可得的正負性,即可判斷;②令,即可判斷;③令,方程有兩個不相等的實數根即可判斷;④根據對稱軸大于0小于1即可判斷.【詳解】①由函數圖象可得、∵對稱軸∴∴②令,則③令,由圖像可知方程有兩個不相等的實數根∴④∵對稱軸∴∴綜上所述,值小于的有②④.【點睛】本題考察二次函數圖象與系數的關系,充分利用圖象獲取解題的關鍵信息是關鍵.18、【分析】設點到圓心的距離為d,圓的半徑為r,則d>r時,點在圓外;當d=r時,點在圓上;當d<r時,點在圓內.【詳解】點P在圓外,則點到圓心的距離大于圓的半徑,因而線段OP的長度的取值范圍是OP>1.故答案為.【點睛】本題考查了對點與圓的位置關系的判斷.熟記點與圓位置關系與數量關系的對應是解題關鍵,由位置關系可推得數量關系,同樣由數量關系也可推得位置關系.三、解答題(共66分)19、米【分析】如圖(見解析),過點A作于點E,過B作于點F,設河寬為x米,則,在和中分別利用和建立x的等式,求解即可.【詳解】過點A作于點E,過B作于點F設河寬為x米,則依題意得在中,,即解得:則在中,,即解得:(米)答:根據學習小組的測量數據計算出河寬為米.【點睛】本題考查了銳角三角函數中的正切的實際應用,依據題意構造出直角三角形是解題關鍵.20、(1)見解析;(2).【分析】(1)連接OC,則,由角平分線的性質和,得到,即可得到結論成立;(2)由AB是直徑,得到∠AEB=90°,則四邊形DEFC是矩形,由三角形中位線定理,得到BE=2CD=8,由勾股定理,即可求出答案.【詳解】(1)證明:連接,交于,由是切線得;又∵,∴,∵,∴,∴,∴,即.(2)解:∵是的直徑,∴,∵,∴,∴,∵,∴,∴,∵,∴四邊形是矩形,∴,∴,∴;∴的半徑為.【點睛】本題考查了圓的切線的性質,矩形的判定和性質,角平分線性質,三角形的中位線定理,以及勾股定理,解題的關鍵是掌握所學知識進行求解,正確得到AB的長度.21、(1)見解析;(2)見解析.【分析】(1)利用關于軸對稱點的性質:橫坐標相等,縱坐標互為相反數可以求出.(2)利用位似圖像的性質得出對應點位置.【詳解】如圖所示:畫出軸對稱的.畫出放大后的位似.【點睛】本題考查了關于對稱軸對稱的點的性質以及位似的性質.22、(1)該火箭升空后飛行的最大高度為;(2)點火后和時,火箭高度為.【分析】(1)直接利用配方法將二次函數寫成頂點式,進而求出即可;(2)把直接帶入函數,解得的值即為所求.【詳解】解:(1)由題意可得:.該火箭升空后飛行的最大高度為.(2)時,.解得:或.點火后和時,火箭高度為.【點睛】本題考查了二次函數的應用,明確與的值是解題的關鍵.23、BF2=FG·EF.【解析】由題意根據BE∥AC,可得∠1=∠E,然后有∠1=∠2,可得∠2=∠E,又由∠GFB=∠BFE,可得出△BFG∽△EFB,最后可得出BF2=FG?FE.【詳解】解:BF2=FG·EF.證明:∵BE∥AC,∴∠1=∠E.∵∠1=∠2,∴∠2=∠E.又∵∠BFG=∠EFB,∴△BFG∽△EFB.∴,∴BF2=FG·EF.【點睛】本題考查相似三角形的判定與性質,解答本題的關鍵是根據BE∥AC,得出∠1=∠E,進而判定△BFG∽△EFB.24、(1)AC=5,AD=5;(2)直線PC與⊙O相切【分析】(1)、連接BD,根據AB為直徑,則∠ACB=∠ADB=90°,根據Rt△ABC的勾股定理求出AC的長度,根據CD平分∠ACB得出Rt△ABD是等腰直角三角形,從而得出AD的長度;(2)、連接OC,根據OA=OC得出∠CAO=∠OCA,根據PC=PE得出∠PCE=∠PEC,然后結合CD平分∠ACB得出∠ACE=∠ECB,從而得出∠PCB=∠ACO,根據∠ACB=90°得出∠OCP=90°,從而說明切線.【詳解】解:(1)、①如圖,連接BD,∵A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論