




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.正三棱柱中,,是的中點,則異面直線與所成的角為()A. B. C. D.2.過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標為3,且,則拋物線的方程是()A. B. C. D.3.已知函數,關于的方程R)有四個相異的實數根,則的取值范圍是(
)A. B. C. D.4.在中,為邊上的中線,為的中點,且,,則()A. B. C. D.5.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.46.在中,,分別為,的中點,為上的任一點,實數,滿足,設、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.7.正項等比數列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.8.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.09.費馬素數是法國大數學家費馬命名的,形如的素數(如:)為費馬索數,在不超過30的正偶數中隨機選取一數,則它能表示為兩個不同費馬素數的和的概率是()A. B. C. D.10.2019年10月1日,為了慶祝中華人民共和國成立70周年,小明、小紅、小金三人以國慶為主題各自獨立完成一幅十字繡贈送給當地的村委會,這三幅十字繡分別命名為“鴻福齊天”、“國富民強”、“興國之路”,為了弄清“國富民強”這一作品是誰制作的,村支書對三人進行了問話,得到回復如下:小明說:“鴻福齊天”是我制作的;小紅說:“國富民強”不是小明制作的,就是我制作的;小金說:“興國之路”不是我制作的,若三人的說法有且僅有一人是正確的,則“鴻福齊天”的制作者是()A.小明 B.小紅 C.小金 D.小金或小明11.已知函數,給出下列四個結論:①函數的值域是;②函數為奇函數;③函數在區間單調遞減;④若對任意,都有成立,則的最小值為;其中正確結論的個數是()A. B. C. D.12.若復數是純虛數,則實數的值為()A.或 B. C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.曲線y=e-5x+2在點(0,3)處的切線方程為________.14.隨著國力的發展,人們的生活水平越來越好,我國的人均身高較新中國成立初期有大幅提高.為了掌握學生的體質與健康現狀,合理制定學校體育衛生工作發展規劃,某市進行了一次全市高中男生身高統計調查,數據顯示全市30000名高中男生的身高(單位:)服從正態分布,且,那么該市身高高于的高中男生人數大約為__________.15.在數列中,已知,則數列的的前項和為__________.16.安排名男生和名女生參與完成項工作,每人參與一項,每項工作至少由名男生和名女生完成,則不同的安排方式共有________種(用數字作答).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的各項均為正數,為其前n項和,對于任意的滿足關系式.(1)求數列的通項公式;(2)設數列的通項公式是,前n項和為,求證:對于任意的正數n,總有.18.(12分)設函數.(1)若,時,在上單調遞減,求的取值范圍;(2)若,,,求證:當時,.19.(12分)已知公差不為零的等差數列的前n項和為,,是與的等比中項.(1)求;(2)設數列滿足,,求數列的通項公式.20.(12分)已知圓的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數方程是是參數),若直線與圓相切,求實數的值.21.(12分)在直角坐標系中,點的坐標為,直線的參數方程為(為參數,為常數,且).以直角坐標系的原點為極點,軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系,圓的極坐標方程為.設點在圓外.(1)求的取值范圍.(2)設直線與圓相交于兩點,若,求的值.22.(10分)已知曲線:和:(為參數).以原點為極點,軸的正半軸為極軸,建立極坐標系,且兩種坐標系中取相同的長度單位.(1)求曲線的直角坐標方程和的方程化為極坐標方程;(2)設與,軸交于,兩點,且線段的中點為.若射線與,交于,兩點,求,兩點間的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
取中點,連接,,根據正棱柱的結構性質,得出//,則即為異面直線與所成角,求出,即可得出結果.【詳解】解:如圖,取中點,連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設,則,,,則,∴.故選:C.【點睛】本題考查通過幾何法求異面直線的夾角,考查計算能力.2、B【解析】
利用拋物線的定義可得,,把線段AB中點的橫坐標為3,代入可得p值,然后可得出拋物線的方程.【詳解】設拋物線的焦點為F,設點,由拋物線的定義可知,線段AB中點的橫坐標為3,又,,可得,所以拋物線方程為.故選:B.【點睛】本題考查拋物線的定義、標準方程,以及簡單性質的應用,利用拋物線的定義是解題的關鍵.3、A【解析】=,當時時,單調遞減,時,單調遞增,且當,當,
當時,恒成立,時,單調遞增且,方程R)有四個相異的實數根.令=則,,即.4、A【解析】
根據向量的線性運算可得,利用及,計算即可.【詳解】因為,所以,所以,故選:A【點睛】本題主要考查了向量的線性運算,向量數量積的運算,向量數量積的性質,屬于中檔題.5、B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得。∴.選B。6、D【解析】
根據三角形中位線的性質,可得到的距離等于△的邊上高的一半,從而得到,由此結合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據平面向量基本定理可求得,從而可求得結果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應用,考查了基本不等式求最值,屬于中檔題.7、D【解析】
設等比數列的公比為q,,運用等比數列的性質和通項公式,以及等差數列的中項性質,解方程可得公比q.【詳解】由題意,正項等比數列中,,可得,即,與的等差中項為4,即,設公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數列的中項性質和等比數列的通項公式的應用,其中解答中熟記等比數列通項公式,合理利用等比數列的性質是解答的關鍵,著重考查了方程思想和運算能力,屬于基礎題.8、B【解析】
根據題意可得,利用向量的數量積即可求解夾角.【詳解】因為即而所以夾角為故選:B【點睛】本題考查了向量數量積求夾角,需掌握向量數量積的定義求法,屬于基礎題.9、B【解析】
基本事件總數,能表示為兩個不同費馬素數的和只有,,,共有個,根據古典概型求出概率.【詳解】在不超過的正偶數中隨機選取一數,基本事件總數能表示為兩個不同費馬素數的和的只有,,,共有個則它能表示為兩個不同費馬素數的和的概率是本題正確選項:【點睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎題.10、B【解析】
將三個人制作的所有情況列舉出來,再一一論證.【詳解】依題意,三個人制作的所有情況如下所示:123456鴻福齊天小明小明小紅小紅小金小金國富民強小紅小金小金小明小紅小明興國之路小金小紅小明小金小明小紅若小明的說法正確,則均不滿足;若小紅的說法正確,則4滿足;若小金的說法正確,則3滿足.故“鴻福齊天”的制作者是小紅,故選:B.【點睛】本題考查推理與證明,還考查推理論證能力以及分類討論思想,屬于基礎題.11、C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結合正弦函數得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數,故②錯誤;當時,,單調遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數的綜合運用,涉及到函數的值域、函數單調性、函數奇偶性及函數最值等內容,是一道較為綜合的問題.12、C【解析】試題分析:因為復數是純虛數,所以且,因此注意不要忽視虛部不為零這一隱含條件.考點:純虛數二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】
先利用導數求切線的斜率,再寫出切線方程.【詳解】因為y′=-5e-5x,所以切線的斜率k=-5e0=-5,所以切線方程是:y-3=-5(x-0),即y=-5x+3.故答案為y=-5x+3.【點睛】(1)本題主要考查導數的幾何意義和函數的求導,意在考查學生對這些知識的掌握水平和分析推理能力.(2)函數在點處的導數是曲線在處的切線的斜率,相應的切線方程是14、3000【解析】
根據正態曲線的對稱性求出,進而可求出身高高于的高中男生人數.【詳解】解:全市30000名高中男生的身高(單位:)服從正態分布,且,則,該市身高高于的高中男生人數大約為.故答案為:.【點睛】本題考查正態曲線的對稱性的應用,是基礎題.15、【解析】
由已知數列遞推式可得數列的所有奇數項與偶數項分別構成以2為公比的等比數列,求其通項公式,得到,再由求解.【詳解】解:由,得,,則數列的所有奇數項與偶數項分別構成以2為公比的等比數列.,..故答案為:.【點睛】本題考查數列遞推式,考查等差數列與等比數列的通項公式,訓練了數列的分組求和,屬于中檔題.16、1296【解析】
先從4個男生選2個一組,將4人分成三組,然后從4個女生選2個一組,將4人分成三組,然后全排列即可.【詳解】由于每項工作至少由名男生和名女生完成,則先從4個男生選2個一組,將4人分成三組,所以男生的排法共有,同理女生的排法共有,故不同的安排共有種.故答案為:1296【點睛】本題主要考查了排列組合的應用,考查了學生應用數學解決實際問題的能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)根據公式得到,計算得到答案.(2),根據裂項求和法計算得到,得到證明.【詳解】(1)由已知得時,,故.故數列為等比數列,且公比.又當時,,..(2)..【點睛】本題考查了數列通項公式和證明數列不等式,意在考查學生對于數列公式方法的綜合應用.18、(1)(2)見解析【解析】
(1)在上單調遞減等價于在恒成立,分離參數即可解決.(2)先對求導,化簡后根據零點存在性定理判斷唯一零點所在區間,構造函數利用基本不等式求解即可.【詳解】(1),時,,,∵在上單調遞減.∴,.令,,時,;時,,∴在上為減函數,在上為增函數.∴,∴.∴的取值范圍為.(2)若,,時,,,令,顯然在上為增函數.又,,∴有唯一零點.且,時,,;時,,,∴在上為增函數,在上為減函數.∴.又,∴,,.∴.,.∴當時,.【點睛】此題考查函數定區間上單調,和零點存在性定理等知識點,難點為找到最值后的構造函數求值域,屬于較難題目.19、(1);(2).【解析】
(1)根據題意,建立首項和公差的方程組,通過基本量即可寫出前項和;(2)由(1)中所求,結合累加法求得.【詳解】(1)由題意可得即又因為,所以,所以.(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【點睛】本題考查等差數列通項公式和前項和的基本量的求解,涉及利用累加法求通項公式,屬綜合基礎題.20、【解析】
將圓的極坐標方程化為直角坐標方程,直線的參數方程化為普通方程,再根據直線與圓相切,利用圓心到直線的距離等于半徑,即可求實數的值.【詳解】由,得,,即圓的方程為,又由消,得,直線與圓相切,,.【點睛】本題重點考查方程的互化,考查直線與圓的位置關系,解題的關鍵是利用圓心到直線的距離等于半徑,研究直線與圓相切.21、(1)(2)【解析】
(1)首先將曲線化為直角坐標方程,由點在圓外,則解得即可;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山西華澳商貿職業學院《臨床檢驗儀器》2023-2024學年第二學期期末試卷
- 濟南護理職業學院《嵌入式課程設計》2023-2024學年第二學期期末試卷
- 臨床免疫學檢驗課件 第3章 免疫原和抗血清的制備學習資料
- 西安海棠職業學院《隸書》2023-2024學年第一學期期末試卷
- 江蘇農牧科技職業學院《硬筆書法》2023-2024學年第一學期期末試卷
- 鹽城工業職業技術學院《工商管理級學碩》2023-2024學年第二學期期末試卷
- 二零二五版資金監管委托協議樣本
- 二零二五全新美食城檔口出租協議
- 二零二五版學生托人接送免責協議書范文
- 游戲開發回顧與展望
- 工程維保服務內容措施及售后服務專項方案
- 醫院手衛生知識考試題庫100題(含答案)
- 四年級四年級下冊閱讀理解20篇(附帶答案解析)經典
- 安全人員崗位任命通知
- 4.2實驗探究加速度與力質量的關系(課件)高中物理
- 產品標識和可追溯性管理培訓
- 辦公用品售后服務方案
- 施工環境保護培訓課件
- 區塊鏈與電子商務安全的保障
- 不銹鋼營銷計劃書
- 區塊鏈與電子商務培訓
評論
0/150
提交評論