高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)期末必備_第1頁
高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)期末必備_第2頁
高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)期末必備_第3頁
高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)期末必備_第4頁
高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)期末必備_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)期末必備高一數(shù)學(xué)學(xué)問點(diǎn)總結(jié)(一)

一、高中數(shù)學(xué)函數(shù)的有關(guān)概念

1.高中數(shù)學(xué)函數(shù)函數(shù)的概念:設(shè)A、B是非空的數(shù)集,假如根據(jù)某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于函數(shù)A中的任意一個(gè)數(shù)x,在函數(shù)B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從函數(shù)A到函數(shù)B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的函數(shù){f(x)|x∈A}叫做函數(shù)的值域.

留意:

函數(shù)定義域:能使函數(shù)式有意義的實(shí)數(shù)x的函數(shù)稱為函數(shù)的定義域。

求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

(1)分式的分母不等于零;

(2)偶次方根的被開方數(shù)不小于零;

(3)對(duì)數(shù)式的真數(shù)必需大于零;

(4)指數(shù)、對(duì)數(shù)式的底必需大于零且不等于1.

(5)假如函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的函數(shù).

(6)指數(shù)為零底不行以等于零,

(7)實(shí)際問題中的函數(shù)的定義域還要保證明際問題有意義.

?相同函數(shù)的推斷(方法):①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域全都(兩點(diǎn)必需同時(shí)具備)

2.高中數(shù)學(xué)函數(shù)值域:先考慮其定義域

(1)觀看法

(2)配方法

(3)代換法

3.函數(shù)圖象學(xué)問歸納

(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿意函數(shù)關(guān)系y=f(x),反過來,以滿意y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

(2)畫法

A、描點(diǎn)法:

B、圖象變換法

常用變換方法有三種

1)平移變換

2)伸縮變換

3)對(duì)稱變換

4.高中數(shù)學(xué)函數(shù)區(qū)間的概念

(1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

(2)無窮區(qū)間

5.映射

一般地,設(shè)A、B是兩個(gè)非空的函數(shù),假如按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于函數(shù)A中的任意一個(gè)元素x,在函數(shù)B中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):A(原象)B(象)”

對(duì)于映射f:A→B來說,則應(yīng)滿意:

(1)函數(shù)A中的每一個(gè)元素,在函數(shù)B中都有象,并且象是的;

(2)函數(shù)A中不同的元素,在函數(shù)B中對(duì)應(yīng)的象可以是同一個(gè);

(3)不要求函數(shù)B中的每一個(gè)元素在函數(shù)A中都有原象。

6.高中數(shù)學(xué)函數(shù)之分段函數(shù)

(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

(2)各部分的自變量的取值狀況.

(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

補(bǔ)充:復(fù)合函數(shù)

假如y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。

高一數(shù)學(xué)學(xué)問點(diǎn)總結(jié)(二)

冪函數(shù)

定義

形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

定義域和值域

當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不憐憫況如下:假如a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的全部實(shí)數(shù);假如a為負(fù)數(shù),則x確定不能為0,不過這時(shí)函數(shù)的定義域還必需根[據(jù)q的奇偶性來確定,即假如同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的全部實(shí)數(shù);假如同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的全部實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不憐憫況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

性質(zhì)

對(duì)于a的取值為非零有理數(shù),有必要分成幾種狀況來爭論各自的特性:

首先我們知道假如a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),假如q是奇數(shù),函數(shù)的定義域是R,假如q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),明顯x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

排解了為0與負(fù)數(shù)兩種可能,即對(duì)于x0,則a可以是任意實(shí)數(shù);

排解了為0這種可能,即對(duì)于x0和x0的全部實(shí)數(shù),q不能是偶數(shù);

排解了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的全部實(shí)數(shù),a就不能是負(fù)數(shù)。

指數(shù)函數(shù)

指數(shù)函數(shù)

(1)指數(shù)函數(shù)的定義域?yàn)槿繉?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的狀況,則必定使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

(2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。

(3)函數(shù)圖形都是下凹的。

(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

(5)可以看到一個(gè)明顯的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過渡位置。

(6)函數(shù)總是在某一個(gè)方向上無限趨向于X軸,永不相交。

(7)函數(shù)總是通過(0,1)這點(diǎn)。

(8)明顯指數(shù)函數(shù)無界。

高一數(shù)學(xué)學(xué)問點(diǎn)總結(jié)(三)

1.高中數(shù)學(xué)函數(shù)函數(shù)的概念:設(shè)A、B是非空的數(shù)集,假如根據(jù)某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于函數(shù)A中的任意一個(gè)數(shù)x,在函數(shù)B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從函數(shù)A到函數(shù)B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的函數(shù){f(x)|x∈A}叫做函數(shù)的值域.

留意:

函數(shù)定義域:能使函數(shù)式有意義的實(shí)數(shù)x的函數(shù)稱為函數(shù)的定義域。

求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

(1)分式的分母不等于零;

(2)偶次方根的被開方數(shù)不小于零;

(3)對(duì)數(shù)式的真數(shù)必需大于零;

(4)指數(shù)、對(duì)數(shù)式的底必需大于零且不等于1.

(5)假如函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的函數(shù).

(6)指數(shù)為零底不行以等于零,

(7)實(shí)際問題中的函數(shù)的定義域還要保證明際問題有意義.

?相同函數(shù)的推斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域全都(兩點(diǎn)必需同時(shí)具備)

2.高中數(shù)學(xué)函數(shù)值域:先考慮其定義域

(1)觀看法

(2)配方法

(3)代換法

3.函數(shù)圖象學(xué)問歸納

(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿意函數(shù)關(guān)系y=f(x),反過來,以滿意y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

(2)畫法

A、描點(diǎn)法:

B、圖象變換法

常用變換方法有三種

(1)平移變換

(2)伸縮變換

(3)對(duì)稱變換

4.高中數(shù)學(xué)函數(shù)區(qū)間的概念

(1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

(2)無窮區(qū)間

5.映射

一般地,設(shè)A、B是兩個(gè)非空的函數(shù),假如按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于函數(shù)A中的任意一個(gè)元素x,在函數(shù)B中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):A(原象)B(象)”

對(duì)于映射f:A→B來說,則應(yīng)滿意:

(1)函數(shù)A中的每一個(gè)元素,在函數(shù)B中都有象,并且象是的;

(2)函數(shù)A中不同的元素,在函數(shù)B中對(duì)應(yīng)的象可以是同一個(gè);

(3)不要求函數(shù)B中的每一個(gè)元素在函數(shù)A中都有原象。

6.高中數(shù)學(xué)函數(shù)之分段函數(shù)

(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

(2)各部分的自變量的取值狀況.

(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

補(bǔ)充:復(fù)合函數(shù)

假如y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。

高一數(shù)學(xué)學(xué)問點(diǎn)總結(jié)(四)

圓的方程定義:

圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。

直線和圓的位置關(guān)系:

1.直線和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來爭論位置關(guān)系.

①Δ0,直線和圓相交.②Δ=0,直線和圓相切.③Δ0,直線和圓相離.

方法二是幾何的觀點(diǎn),即把圓心到直線的距離d和半徑R的大小加以比較.

①dR,直線和圓相離.

2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點(diǎn)兩種狀況,而已知直線上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種狀況.

3.直線和圓相交,這類問題主要是求弦長以及弦的中點(diǎn)問題.

切線的性質(zhì)

⑴圓心到切線的距離等于圓的半徑;

⑵過切點(diǎn)的半徑垂直于切線;

⑶經(jīng)過圓心,與切線垂直的直線必經(jīng)過切點(diǎn);

⑷經(jīng)過切點(diǎn),與切線垂直的直線必經(jīng)過圓心;

當(dāng)一條直線滿意

(1)過圓心;

(2)過切點(diǎn);

(3)垂直于切線三共性質(zhì)中的兩個(gè)時(shí),第三共性質(zhì)也滿意.

切線的判定定理

經(jīng)過半徑的外端點(diǎn)并且垂直于這條半徑的直線是圓的切線.

切線長定理

從圓外一點(diǎn)作圓的兩條切線,兩切線長相等,圓心與這一點(diǎn)的連線平分兩條切線的夾角.

高一數(shù)學(xué)學(xué)問點(diǎn)總結(jié)(五)

重點(diǎn)難點(diǎn)講解:

1.回歸分析:

就是對(duì)具有相關(guān)關(guān)系的兩個(gè)變量之間的關(guān)系形式進(jìn)行測定,確定一個(gè)相關(guān)的數(shù)學(xué)表達(dá)式,以便進(jìn)行估量猜測的統(tǒng)計(jì)分析方法。依據(jù)回歸分析方法得出的數(shù)學(xué)表達(dá)式稱為回歸方程,它可能是直線,也可能是曲線。

2.線性回歸方程

設(shè)x與y是具有相關(guān)關(guān)系的兩個(gè)變量,且相應(yīng)于n組觀測值的n個(gè)點(diǎn)(xi,yi)(i=1,,n)大致分布在一條直線的四周,則回歸直線的方程為。

其中。

3.線性相關(guān)性檢驗(yàn)

線性相關(guān)性檢驗(yàn)是一種假設(shè)檢驗(yàn),它給出了一個(gè)詳細(xì)檢驗(yàn)y與x之間線性相關(guān)與否的方法。

①在課本附表3中查出與顯著性水平0.05與自由度n-2(n為觀測值組數(shù))相應(yīng)的相關(guān)系數(shù)臨界值r0.05。

②由公式,計(jì)算r的值。

③檢驗(yàn)所得結(jié)果

假如|r|≤r0.05,可以認(rèn)為y與x之間的線性相關(guān)關(guān)系不顯著,接受統(tǒng)計(jì)假設(shè)。

假如|r|r0.05,可以認(rèn)為y與x之間不具有線性相關(guān)關(guān)系的假設(shè)是不成立的,即y與x之間具有線性相關(guān)關(guān)系。

典型例題講解:

例1.從某班50名同學(xué)中隨機(jī)抽取10名,測得其數(shù)學(xué)考試成果與物理考試成果資料如表:序號(hào)12345678910數(shù)學(xué)成果54666876788285879094,物理成果61806286847685828896試建立該10名同學(xué)的物理成果對(duì)數(shù)學(xué)成果的線性回歸模型。

解:設(shè)數(shù)學(xué)成果為x,物理成果為,則可設(shè)所求線性回歸模型為,

計(jì)算,代入公式得∴所求線性回歸模型為=0.74x+22.28。

說明:將自變量x的值分別代入上述回歸模型中,即可得到相應(yīng)的因變量的估量值,由回歸模型知:數(shù)學(xué)成果每增加1分,物理成果平均增加0.74分。大家可以在老師的關(guān)心下對(duì)自己班的數(shù)學(xué)、化學(xué)成果進(jìn)行分析。

例2.假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的修理費(fèi)用y(萬元),有如下的統(tǒng)計(jì)資料:x23456y2.23.85.56.57.0

若由資料可知y對(duì)x成線性相關(guān)關(guān)系。試求:

(1)線性回歸方程;(2)估量使用年限為10年時(shí),修理費(fèi)用是多少?

分析:本題為了降低難度,告知了y與x間成線性相關(guān)關(guān)系,目的是訓(xùn)練公式的使用。

解:(1)列表如下:i12345xi23456yi2.23.85.56.57.0xiyi4.411.422.032.542.049162536于是b=,。∴線性回歸方程為:=bx+a=1.23x+0.08。

(2)當(dāng)x=10時(shí),=1.23×10+0.08=12.38(萬元)即估量使用10年時(shí)修理費(fèi)用是12.38萬元。

說明:本題若沒有告知我們y與x間是線性相關(guān)的,應(yīng)首先進(jìn)行相關(guān)性檢驗(yàn)。假如本身兩個(gè)變量不具備線性相關(guān)關(guān)系,或者說它們之間相關(guān)關(guān)系不顯著時(shí),即使求出回歸方程也是沒有意義的,而且其估量與猜測也是不行信的。

例3.某省七年的國民生產(chǎn)總值及社會(huì)商品零售總額如下表所示:已知國民生產(chǎn)總值與社會(huì)商品的零售總額之間存在線性關(guān)系,請(qǐng)建立回歸模型。年份國民生產(chǎn)總值(億元)

社會(huì)商品零售總額(億元)1985396.26205.821986442.04227.951987517.77268.661988625.10337.521989700.83366.001990792.54375.111991858.47413.18合計(jì)4333.012194.24

解:設(shè)國民生產(chǎn)總值為x,社會(huì)商品零售總額為y,設(shè)線性回歸模型為。

依上表計(jì)算有關(guān)數(shù)據(jù)后代入的表達(dá)式得:∴所求線性回歸模型為y=0.445957x+37.4148,表明國民生產(chǎn)總值每增加1億元,社會(huì)商品零售總額將平均增加4459.57萬元。

例4.已知某地每單位面積菜地年平均使用氮肥量xkg與每單位面積蔬菜每年平均產(chǎn)量yt之間的關(guān)系有如下數(shù)據(jù):年份19851986198719881989199019911992x(kg)7074807885929095y(t)5.16.06.87.89.010.210.012.0年份19931994199519961997199871999x(kg)92108115123130138145y(t)11.511.011.812.212.512.813.0(1)求x與y之間的相關(guān)系數(shù),并檢驗(yàn)是否線性相關(guān)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論