2023學年陜西省洛南縣永豐中學高三下學期聯考數學試題(含解析)_第1頁
2023學年陜西省洛南縣永豐中學高三下學期聯考數學試題(含解析)_第2頁
2023學年陜西省洛南縣永豐中學高三下學期聯考數學試題(含解析)_第3頁
2023學年陜西省洛南縣永豐中學高三下學期聯考數學試題(含解析)_第4頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023學年高考數學模擬測試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則2.復數滿足為虛數單位),則的虛部為()A. B. C. D.3.在中,,,,若,則實數()A. B. C. D.4.已知雙曲線,為坐標原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.5.若各項均為正數的等比數列滿足,則公比()A.1 B.2 C.3 D.46.已知函數()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.7.函數在上單調遞減,且是偶函數,若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)8.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值9.已知,函數,若函數恰有三個零點,則()A. B.C. D.10.秦九韶是我國南寧時期的數學家,普州(現四川省安岳縣)人,他在所著的《數書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.11.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標準方程為()A. B. C. D.12.某中學2019年的高考考生人數是2016年高考考生人數的1.2倍,為了更好地對比該校考生的升學情況,統計了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結論正確的是().A.與2016年相比,2019年不上線的人數有所增加B.與2016年相比,2019年一本達線人數減少C.與2016年相比,2019年二本達線人數增加了0.3倍D.2016年與2019年藝體達線人數相同二、填空題:本題共4小題,每小題5分,共20分。13.函數的圖象在處的切線與直線互相垂直,則_____.14.在等比數列中,,則________.15.現有5人要排成一排照相,其中甲與乙兩人不相鄰,且甲不站在兩端,則不同的排法有____種.(用數字作答)16.已知的展開式中含有的項的系數是,則展開式中各項系數和為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,已知四邊形BCDE為直角梯形,,,且,A為BE的中點將沿AD折到位置如圖,連結PC,PB構成一個四棱錐.(Ⅰ)求證;(Ⅱ)若平面.①求二面角的大小;②在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.18.(12分)我國在貴州省平塘縣境內修建的500米口徑球面射電望遠鏡(FAST)是目前世界上最大單口徑射電望遠鏡.使用三年來,已發現132顆優質的脈沖星候選體,其中有93顆已被確認為新發現的脈沖星,脈沖星是上世紀60年代天文學的四大發現之一,脈沖星就是正在快速自轉的中子星,每一顆脈沖星每兩脈沖間隔時間(脈沖星的自轉周期)是-定的,最小小到0.0014秒,最長的也不過11.765735秒.某-天文研究機構觀測并統計了93顆已被確認為新發現的脈沖星的自轉周期,繪制了如圖的頻率分布直方圖.(1)在93顆新發現的脈沖星中,自轉周期在2至10秒的大約有多少顆?(2)根據頻率分布直方圖,求新發現脈沖星自轉周期的平均值.19.(12分)已知函數,.(1)若函數在上單調遞減,且函數在上單調遞增,求實數的值;(2)求證:(,且).20.(12分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長.21.(12分)為增強學生的法治觀念,營造“學憲法、知憲法、守憲法”的良好校園氛圍,某學校開展了“憲法小衛士”活動,并組織全校學生進行法律知識競賽.現從全校學生中隨機抽取50名學生,統計他們的競賽成績,已知這50名學生的競賽成績均在[50,100]內,并得到如下的頻數分布表:分數段[50,60)[60,70)[70,80)[80,90)[90,100]人數51515123(1)將競賽成績在內定義為“合格”,競賽成績在內定義為“不合格”.請將下面的列聯表補充完整,并判斷是否有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關?合格不合格合計高一新生12非高一新生6合計(2)在(1)的前提下,按“競賽成績合格與否”進行分層抽樣,從這50名學生中抽取5名學生,再從這5名學生中隨機抽取2名學生,求這2名學生競賽成績都合格的概率.參考公式及數據:,其中.22.(10分)在平面直角坐標系中,已知直線的參數方程為(為參數),圓的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系.(1)求和的極坐標方程;(2)過且傾斜角為的直線與交于點,與交于另一點,若,求的取值范圍.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【答案解析】試題分析:,,故選D.考點:點線面的位置關系.2、C【答案解析】

,分子分母同乘以分母的共軛復數即可.【題目詳解】由已知,,故的虛部為.故選:C.【答案點睛】本題考查復數的除法運算,考查學生的基本運算能力,是一道基礎題.3、D【答案解析】

將、用、表示,再代入中計算即可.【題目詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【答案點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算,是一道中檔題.4、D【答案解析】

根據,先確定出的長度,然后利用雙曲線定義將轉化為的關系式,化簡后可得到的值,即可求漸近線方程.【題目詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【答案點睛】本題考查根據雙曲線中的長度關系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.5、C【答案解析】

由正項等比數列滿足,即,又,即,運算即可得解.【題目詳解】解:因為,所以,又,所以,又,解得.故選:C.【答案點睛】本題考查了等比數列基本量的求法,屬基礎題.6、A【答案解析】

是函數的零點,根據五點法求出圖中零點及軸左邊第一個零點可得.【題目詳解】由題意,,∴函數在軸右邊的第一個零點為,在軸左邊第一個零點是,∴的最小值是.故選:A.【答案點睛】本題考查三角函數的周期性,考查函數的對稱性.函數的零點就是其圖象對稱中心的橫坐標.7、B【答案解析】

根據題意分析的圖像關于直線對稱,即可得到的單調區間,利用對稱性以及單調性即可得到的取值范圍。【題目詳解】根據題意,函數滿足是偶函數,則函數的圖像關于直線對稱,若函數在上單調遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【答案點睛】本題考查偶函數的性質,以及函數單調性的應用,有一定綜合性,屬于中檔題。8、D【答案解析】

A.通過線面的垂直關系可證真假;B.根據線面平行可證真假;C.根據三棱錐的體積計算的公式可證真假;D.根據列舉特殊情況可證真假.【題目詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【答案點睛】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內.9、C【答案解析】

當時,最多一個零點;當時,,利用導數研究函數的單調性,根據單調性畫函數草圖,根據草圖可得.【題目詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數遞增,令得,,函數遞減;函數最多有2個零點;根據題意函數恰有3個零點函數在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【答案點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數,故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.10、B【答案解析】

列出循環的每一步,由此可得出輸出的值.【題目詳解】由題意可得:輸入,,,;第一次循環,,,,繼續循環;第二次循環,,,,繼續循環;第三次循環,,,,跳出循環;輸出.故選:B.【答案點睛】本題考查根據算法框圖計算輸出值,一般要列舉出算法的每一步,考查計算能力,屬于基礎題.11、B【答案解析】

根據焦點所在坐標軸和漸近線方程設出雙曲線的標準方程,結合焦點坐標求解.【題目詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設雙曲線的方程為,一個焦點為,∴,∴,故的標準方程為.故選:B【答案點睛】此題考查根據雙曲線的漸近線和焦點求解雙曲線的標準方程,易錯點在于漏掉考慮焦點所在坐標軸導致方程形式出錯.12、A【答案解析】

設2016年高考總人數為x,則2019年高考人數為,通過簡單的計算逐一驗證選項A、B、C、D.【題目詳解】設2016年高考總人數為x,則2019年高考人數為,2016年高考不上線人數為,2019年不上線人數為,故A正確;2016年高考一本人數,2019年高考一本人數,故B錯誤;2019年二本達線人數,2016年二本達線人數,增加了倍,故C錯誤;2016年藝體達線人數,2019年藝體達線人數,故D錯誤.故選:A.【答案點睛】本題考查柱狀圖的應用,考查學生識圖的能力,是一道較為簡單的統計類的題目.二、填空題:本題共4小題,每小題5分,共20分。13、1.【答案解析】

求函數的導數,根據導數的幾何意義結合直線垂直的直線斜率的關系建立方程關系進行求解即可.【題目詳解】函數的圖象在處的切線與直線垂直,函數的圖象在的切線斜率本題正確結果:【答案點睛】本題主要考查直線垂直的應用以及導數的幾何意義,根據條件建立方程關系是解決本題的關鍵.14、1【答案解析】

設等比數列的公比為,再根據題意用基本量法求解公比,進而利用等比數列項之間的關系得即可.【題目詳解】設等比數列的公比為.由,得,解得.又由,得.則.故答案為:1【答案點睛】本題主要考查了等比數列基本量的求解方法,屬于基礎題.15、36【答案解析】

先優先考慮甲、乙兩人不相鄰的排法,在此條件下,計算甲不排在兩端的排法,最后相減即可得到結果.【題目詳解】由題意得5人排成一排,甲、乙兩人不相鄰,有種排法,其中甲排在兩端,有種排法,則6人排成一排,甲、乙兩人不相鄰,且甲不排在兩端,共有(種)排法.所以本題答案為36.【答案點睛】排列、組合問題由于其思想方法獨特,計算量龐大,對結果的檢驗困難,所以在解決這類問題時就要遵循一定的解題原則,如特殊元素、位置優先原則、先取后排原則、先分組后分配原則、正難則反原則等,只有這樣我們才能有明確的解題方向.同時解答組合問題時必須心思細膩、考慮周全,這樣才能做到不重不漏,正確解題.16、1【答案解析】

由二項式定理及展開式通項公式得:,解得,令得:展開式中各項系數和,得解.【題目詳解】解:由的展開式的通項,令,得含有的項的系數是,解得,令得:展開式中各項系數和為,故答案為:1.【答案點睛】本題考查了二項式定理及展開式通項公式,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、Ⅰ詳見解析;Ⅱ①,②或.【答案解析】

Ⅰ可以通過已知證明出平面PAB,這樣就可以證明出;Ⅱ以點A為坐標原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標系,可以求出相應點的坐標,求出平面PBC的法向量為、平面PCD的法向量,利用空間向量的數量積,求出二面角的大小;求出平面PBC的法向量,利用線面角的公式求出的值.【題目詳解】證明:Ⅰ在圖1中,,,為平行四邊形,,,,當沿AD折起時,,,即,,又,平面PAB,又平面PAB,.解:Ⅱ以點A為坐標原點,分別以AB,AD,AP為x,y,z軸,建立空間直角坐標系,由于平面ABCD則0,,0,,1,,0,,1,1,,1,,0,,設平面PBC的法向量為y,,則,取,得0,,設平面PCD的法向量b,,則,取,得1,,設二面角的大小為,可知為鈍角,則,.二面角的大小為.設AM與面PBC所成角為,0,,1,,,,平面PBC的法向量0,,直線AM與平面PBC所成的角為,,解得或.【答案點睛】本題考查了利用線面垂直證明線線垂直,考查了利用向量數量積,求二面角的大小以及通過線面角公式求定比分點問題.18、(1)79顆;(2)5.5秒.【答案解析】

(1)利用各小矩形的面積和為1可得,進而得到脈沖星自轉周期在2至10秒的頻率,從而得到頻數;(2)平均值的估計值為各小矩形組中值與頻率的乘積的和得到.【題目詳解】(1)第一到第六組的頻率依次為0.1,0.2,0.3,0.2,,0.05,其和為1所以,,所以,自轉周期在2至10秒的大約有(顆).(2)新發現的脈沖星自轉周期平均值為(秒).故新發現的脈沖星自轉周期平均值為5.5秒.【答案點睛】本題考查頻率分布直方圖的應用,涉及到平均數的估計值等知識,是一道容易題.19、(1)1;(2)見解析【答案解析】

(1)分別求得與的導函數,由導函數與單調性關系即可求得的值;(2)由(1)可知當時,,當時,,因而,構造,由對數運算及不等式放縮可證明,從而不等式可證明.【題目詳解】(1)∵函數在上單調遞減,∴,即在上恒成立,∴,又∵函數在上單調遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當時,函數在上為減函數,在上為增函數,而,∴當時,,當時,.∴∴即,∴.【答案點睛】本題考查了導數與函數單調性關系,放縮法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論