2022年河南省南陽高考數學必刷試卷含解析_第1頁
2022年河南省南陽高考數學必刷試卷含解析_第2頁
2022年河南省南陽高考數學必刷試卷含解析_第3頁
2022年河南省南陽高考數學必刷試卷含解析_第4頁
2022年河南省南陽高考數學必刷試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數學模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知.給出下列判斷:若,且,則;存在使得的圖象向右平移個單位長度后得到的圖象關于軸對稱;若在上恰有7個零點,則的取值范圍為;若在上單調遞增,則的取值范圍為.其中,判斷正確的個數為( )

2、A1B2C3D42一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側視圖),則這個四棱錐中最最長棱的長度是( )ABCD3兩圓和相外切,且,則的最大值為( )AB9CD14已知直線:與圓:交于,兩點,與平行的直線與圓交于,兩點,且與的面積相等,給出下列直線:,.其中滿足條件的所有直線的編號有( )ABCD5已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為( )AB4C2D6函數(, , )的部分圖象如圖所示,則的值分別為( )A2,0B2, C2, D2, 7設,則( )ABCD8設函數定義域為全體實數,令有以下6個論斷:是奇函數時,是

3、奇函數;是偶函數時,是奇函數;是偶函數時,是偶函數;是奇函數時,是偶函數是偶函數;對任意的實數,那么正確論斷的編號是( )ABCD9數學中的數形結合,也可以組成世間萬物的絢麗畫面.一些優美的曲線是數學形象美、對稱美、和諧美的結合產物,曲線恰好是四葉玫瑰線.給出下列結論:曲線C經過5個整點(即橫、縱坐標均為整數的點);曲線C上任意一點到坐標原點O的距離都不超過2;曲線C圍成區域的面積大于;方程表示的曲線C在第二象限和第四象限其中正確結論的序號是( )ABCD10存在點在橢圓上,且點M在第一象限,使得過點M且與橢圓在此點的切線垂直的直線經過點,則橢圓離心率的取值范圍是( )ABCD11已知函數,若

4、曲線上始終存在兩點,使得,且的中點在軸上,則正實數的取值范圍為( )ABCD12已知復數z=2i1-i,則z的共軛復數在復平面對應的點位于( )A第一象限B第二象限C第三象限D第四象限二、填空題:本題共4小題,每小題5分,共20分。13成都市某次高三統考,成績X經統計分析,近似服從正態分布,且,若該市有人參考,則估計成都市該次統考中成績大于分的人數為_14已知滿足且目標函數的最大值為7,最小值為1,則_15函數的值域為_.16已知復數z112i,z2a+2i(其中i是虛數單位,aR),若z1z2是純虛數,則a的值為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已

5、知函數.(1)討論的單調性;(2)若恒成立,求實數的取值范圍.18(12分)已知動圓恒過點,且與直線相切.(1)求圓心的軌跡的方程;(2)設是軌跡上橫坐標為2的點,的平行線交軌跡于,兩點,交軌跡在處的切線于點,問:是否存在實常數使,若存在,求出的值;若不存在,說明理由.19(12分)在平面直角坐標系中,已知直線的參數方程為(為參數),圓的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系.(1)求和的極坐標方程;(2)過且傾斜角為的直線與交于點,與交于另一點,若,求的取值范圍.20(12分)某廣告商租用了一塊如圖所示的半圓形封閉區域用于產品展示,該封閉區域由以為圓心的半圓及直徑圍成在此區域內

6、原有一個以為直徑、為圓心的半圓形展示區,該廣告商欲在此基礎上,將其改建成一個凸四邊形的展示區,其中、分別在半圓與半圓的圓弧上,且與半圓相切于點已知長為40米,設為(上述圖形均視作在同一平面內)(1)記四邊形的周長為,求的表達式;(2)要使改建成的展示區的面積最大,求的值21(12分)如圖,在四棱錐中,底面是直角梯形且,側面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大小;(2)若,且直線與平面所成角為,求的值.22(10分)在平面四邊形(圖)中,與均為直角三角形且有公共斜邊,設,將沿折起,構成如圖所示的三棱錐,且使=. (1)求證:平面平面;(2)求二面角的余弦值.參考答案一、

7、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】對函數化簡可得,進而結合三角函數的最值、周期性、單調性、零點、對稱性及平移變換,對四個命題逐個分析,可選出答案.【詳解】因為,所以周期.對于,因為,所以,即,故錯誤;對于,函數的圖象向右平移個單位長度后得到的函數為,其圖象關于軸對稱,則,解得,故對任意整數,所以錯誤;對于,令,可得,則,因為,所以在上第1個零點,且,所以第7個零點,若存在第8個零點,則,所以,即,解得,故正確;對于,因為,且,所以,解得,又,所以,故正確.故選:B.【點睛】本題考查三角函數的恒等變換,考查三角函數的平移

8、變換、最值、周期性、單調性、零點、對稱性,考查學生的計算求解能力與推理能力,屬于中檔題.2A【解析】作出其直觀圖,然后結合數據根據勾股定定理計算每一條棱長即可.【詳解】根據三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,平面,且,這個四棱錐中最長棱的長度是故選【點睛】本題考查了四棱錐的三視圖的有關計算,正確還原直觀圖是解題關鍵,屬于基礎題3A【解析】由兩圓相外切,得出,結合二次函數的性質,即可得出答案.【詳解】因為兩圓和相外切所以,即當時,取最大值故選:A【點睛】本題主要考查了由圓與圓的位置關系求參數,屬于中檔題.4D【解析】求出圓心到直線的距離為:,得出,根據條件得出到直線的距

9、離或時滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,而,與的面積相等,或,即到直線的距離或時滿足條件,根據點到直線距離可知,滿足條件.故選:D.【點睛】本題考查直線與圓的位置關系的應用,涉及點到直線的距離公式.5A【解析】由已知得,由已知比值得,再利用雙曲線的定義可用表示出,用勾股定理得出的等式,從而得離心率【詳解】.又,可令,則.設,得,即,解得,,由得,該雙曲線的離心率.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是由向量數量積為0得出垂直關系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的

10、關系6D【解析】由題意結合函數的圖象,求出周期,根據周期公式求出,求出,根據函數的圖象過點,求出,即可求得答案【詳解】由函數圖象可知:,函數的圖象過點,則故選【點睛】本題主要考查的是的圖像的運用,在解答此類題目時一定要挖掘圖像中的條件,計算三角函數的周期、最值,代入已知點坐標求出結果7D【解析】結合指數函數及對數函數的單調性,可判斷出,即可選出答案.【詳解】由,即,又,即,即,所以.故選:D.【點睛】本題考查了幾個數的大小比較,考查了指數函數與對數函數的單調性的應用,屬于基礎題.8A【解析】根據函數奇偶性的定義即可判斷函數的奇偶性并證明.【詳解】當是偶函數,則,所以,所以是偶函數;當是奇函數時

11、,則,所以,所以是偶函數;當為非奇非偶函數時,例如:,則,此時,故錯誤;故正確.故選:A【點睛】本題考查了函數的奇偶性定義,掌握奇偶性定義是解題的關鍵,屬于基礎題.9B【解析】利用基本不等式得,可判斷;和聯立解得可判斷;由圖可判斷.【詳解】,解得(當且僅當時取等號),則正確;將和聯立,解得,即圓與曲線C相切于點,則和都錯誤;由,得正確.故選:B.【點睛】本題考查曲線與方程的應用,根據方程,判斷曲線的性質及結論,考查學生邏輯推理能力,是一道有一定難度的題.10D【解析】根據題意利用垂直直線斜率間的關系建立不等式再求解即可.【詳解】因為過點M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,

12、所以.故選:D【點睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎題.11D【解析】根據中點在軸上,設出兩點的坐標,().對分成三類,利用則,列方程,化簡后求得,利用導數求得的值域,由此求得的取值范圍.【詳解】根據條件可知,兩點的橫坐標互為相反數,不妨設,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數量積為零的坐標表示,考查化歸與轉化的數學思想方法,考查利用導數研究函數的最小值,考查分析與運算能力,屬于較難的題目.12C【解

13、析】分析:根據復數的運算,求得復數z,再利用復數的表示,即可得到復數對應的點,得到答案詳解:由題意,復數z=2i1-i=2i1+i1-i1+i=-1+i,則z=-1-i所以復數z在復平面內對應的點的坐標為(-1,-1),位于復平面內的第三象限,故選C點睛:本題主要考查了復數的四則運算及復數的表示,其中根據復數的四則運算求解復數z是解答的關鍵,著重考查了推理與運算能力二、填空題:本題共4小題,每小題5分,共20分。13.【解析】根據正態分布密度曲線性質,結合求得,即可得解.【詳解】根據正態分布,且,所以故該市有人參考,則估計成都市該次統考中成績大于分的人數為故答案為:【點睛】此題考查正態分布密度

14、曲線性質的理解辨析,根據曲線的對稱性求解概率,根據總人數求解成績大于114的人數.14-2【解析】先根據約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時所在的頂點即可【詳解】由題意得:目標函數在點B取得最大值為7,在點A處取得最小值為1,直線AB的方程是:,則,故答案為.【點睛】本題主要考查了簡單的線性規劃,以及利用幾何意義求最值的方法,屬于基礎題15【解析】利用配方法化簡式子,可得,然后根據觀察法,可得結果.【詳解】函數的定義域為所以函數的值域為 故答案為:【點睛】本題考查的是用配方法求函數的值域問題,屬基礎題。16-1【解析】由題意

15、,令即可得解.【詳解】z112i,z2a+2i,又z1z2是純虛數,解得:a1故答案為:1【點睛】本題考查了復數的概念和運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;當時,在上單調遞減,在上單調遞增;(2).【解析】(1)對a分三種情況討論求出函數的單調性;(2)對a分三種情況,先求出每一種情況下函數f(x)的最小值,再解不等式得解.【詳解】(1),當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;當時,在上單調遞減,在上單調遞增.綜上:當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;當

16、時,在上單調遞減,在上單調遞增.(2)由(1)可知:當時,成立.當時,.當時,即.綜上.【點睛】本題主要考查利用導數研究函數的單調性和不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平和分析推理能力.18(1);(2)存在,.【解析】(1)根據拋物線的定義,容易知其軌跡為拋物線;結合已知點的坐標,即可求得方程;(2)由拋物線方程求得點的坐標,設出直線的方程,利用導數求得點的坐標,聯立直線的方程和拋物線方程,結合韋達定理,求得,進而求得與之間的大小關系,即可求得參數.【詳解】(1)由題意得,點與點的距離始終等于點到直線的距離,由拋物線的定義知圓心的軌跡是以點為焦點,直線為準線的拋物線,則,

17、.圓心的軌跡方程為.(2)因為是軌跡上橫坐標為2的點,由(1)不妨取,所以直線的斜率為1.因為,所以設直線的方程為,.由,得,則在點處的切線斜率為2,所以在點處的切線方程為.由得所以,所以.由消去得,由,得且.設,則,.因為點,在直線上,所以,所以,所以.故存在,使得.【點睛】本題考查拋物線軌跡方程的求解,以及拋物線中定值問題的求解,涉及導數的幾何意義,屬綜合性中檔題.19(1);(2)【解析】(1)直接利用轉換公式,把參數方程,直角坐標方程與極坐標方程進行轉化;(2)利用極坐標方程將轉化為三角函數求解即可.【詳解】(1)因為,所以的普通方程為,又,的極坐標方程為,的方程即為,對應極坐標方程為

18、.(2)由己知設,則,所以,又,當,即時,取得最小值;當,即時,取得最大值.所以,的取值范圍為.【點睛】本題主要考查了直角坐標方程,參數方程與極坐標方程的互化,三角函數的值域求解等知識,考查了學生的運算求解能力.20(1),(2)【解析】(1)由余弦定理的,然后根據直線與圓相切的性質求出,從而求出;(2)求得的表達式,通過求導研究函數的單調性求得最大值.【詳解】解:(1)連由條件得在三角形中,由余弦定理,得,因為與半圓相切于,所以,所以,所以所以四邊形的周長為,(2)設四邊形的面積為,則,所以,令,得列表:+0-增最大值減答:要使改建成的展示區的面積最大,的值為【點睛】本題考查余弦定理、直線與

19、圓的位置關系、導數與函數最值的關系,考查考生的邏輯思維能力,運算求解能力,以及函數與方程的思想.21(1);(2).【解析】(1)分別取的中點為,易得兩兩垂直,以所在直線為軸建立空間直角坐標系,易得為平面的法向量,只需求出平面的法向量為,再利用計算即可;(2)求出,利用計算即可.【詳解】(1)分別取的中點為,連結.因為,所以.因為,所以.因為側面為等邊三角形,所以又因為平面平面,平面平面,平面,所以平面,所以兩兩垂直. 以為空間坐標系的原點,分別以所在直線為軸建立如圖所示的空間直角坐標系,因為,則,.設平面的法向量為,則,即.取,則,所以.又為平面的法向量,設平面與平面所成的銳二面角的大小為,則,所以平面與平面所成的銳二面角的大小為.(2)由(1)得,平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論