全等三角形的判定_第1頁
全等三角形的判定_第2頁
全等三角形的判定_第3頁
全等三角形的判定_第4頁
全等三角形的判定_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、教學(xué)內(nèi)容全等三角形的判定、知識點梳理一般二角形直角三角形判定邊角邊(SAS ,角邊角(ASA 邊邊邊(SSS ,角角邊(AAS斜邊、直角邊(HL)性質(zhì)對應(yīng)邊相等、對應(yīng)角相等、周長相等、面積相等、對應(yīng)線段(如對應(yīng)邊上的高、中線、對應(yīng)角平分線)相等備注判定三角形全等必須至少有一組對邊相等注意:判定兩個三角形全等必須具備的三個條件中“邊”是不可缺少的,邊邊角( SSA和角角角(AAA不能作為判定兩個三角形全等的方法。常用的證題思路如下表:已知條件尋找的條件選擇的判定方法兩角夾邊或任,邊ASA或 AAS一角及其對邊AAS一角及鄰邊角的另一鄰邊或邊的另一鄰角或邊的對角SAS或 ASA或 AAS兩邊夾角或

2、另一邊或直角SASig SSSE HLA二、例題講解例1. (SSS如圖,已知 AB=AD CB=CWB么/ B=/ D嗎?為什么?3AB = AD解:相等。理由:連接 AC在/人35口ADC, ?CB= CD?AC = ACABCiAADC(SSS , ZB=Z D (全等三角形的對應(yīng)角相等)例2. (SSS如圖, ABCg一個風(fēng)箏架,AB=AC,AD1連接A與BC中點D的支架,證明:ADLBC.證明:0D是BC的中點, BD=CD滬B= AC在ABM AACDfr, ?BD = CDB D C?AD = ADABDAACD(SSS;)/ ADBW ADC(全等三角形的對應(yīng)角相等)O/ADB

3、廿ADC=80(平角的定義)/ ADBW ADC=90) ADL BC (垂直的定義)例 3. (SAS 如圖,AB=AC,AD=AE:證:/ B=/ C.分析:利用SAS證明兩個三角形全等,/ A是公共角,AB = AC.?A ? A證明:在 ABE與ACDt,,?AE = ADAB草ACD(SAS), / B=/ C (全等三角形的對應(yīng)角相等)DF=CE.例4. (SAS如圖,已知E,F是線段AB上的兩點,且 AE=BF,AD=BC/A=Z B,求證:證明:QAE=BFAE+EF=BF+F即 AF=BE/AD= BC 在DA* ACBE , ?A ?B§AF = BE DA/CB

4、E(SAS), DF=CE(全等三角形的對應(yīng)角相等)7例5. (ASA如圖,已知點 E,C在線段BF上,BE=CF,A日DE,/ACBW F,求證:AB=DE.證明:OAB/ DE, ZB=Z DEF.又 Gi BE=CF BE+EC=CF+ECR BC=EF.穿 B ? DEF在ABCtZXDEF中,?BC= EF ? ACB ? FAB登DEF(ASA), AB=DE.例6. (AAS如圖,已知B,C,E三點在同一條直線上CDE.證明:GAC/ DE/ACBW E,且/ ACDW D.又。/ACDh B, ZB=Z D.在ABCt ACDEt平B ? D ,?ACB ?E , ?AC =

5、CEAB登 ACDE(AAS).例7. (HD如圖,在RtAABC, /A=90;點D為斜邊BC上一點,且BD=BA±點D作BC得垂線,交AC于點E,求證:AE=ED.分析:要證AE=ED可考慮通過證相應(yīng)的三角形全等來解決,但圖中沒有現(xiàn)成的三角形,因此要考慮添加輔助線構(gòu)造出兩線段所在的三角形,結(jié)合已知條件,運用“三點定形法”知,連接 BE即可證明:連接BE.OEDXBCT D, / EDB=90°.在 RtAABEt RtADBE,?BA= BD,?BE = BE I3.如圖,ZXABC 中,AB=AC,AD1高,求證:(1)BD=CD;(2) / BADW CAD.4.如圖,ACL CB,DBL CB,AB=DCt證/ ABDW ACD.RtzXAB草 RtADBE(HL), AE=ED.三、課堂同步練習(xí)1 .

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論