




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、附錄1:外文原文附錄2:外文翻譯鋼筋混凝土建筑在地震中的抗倒塌安全性研究(二):延性框架和非延性框架的對比分析(Abbie B. Liel, M.ASCE1, Curt B. Haselton, M.ASCE2, and Gregory G. Deierlein, F.ASCE3 )摘要:本文是兩篇配套論文的第二篇,旨在探討鋼筋混凝土框架結構在地震中的抗倒塌安全性,并檢驗加利福尼亞州在20世紀70年代中期之前所建非延性框架結構建筑的可靠性。我們基于對結構響應的非線性動態模擬進行概率評估,以此來計算對應于不同的地運動特性和結構類型時結構倒塌的危險。評估的對象是一套不同高度的非延性鋼筋混凝土框架結
2、構原型,它們是根據1967年版統一建筑規范中的抗震規定設計的。結果表明,當處于一個典型的加利福尼亞高震場地時,非延性鋼筋混凝土框架結構發生倒塌的年平均頻率范圍為(514)×10-3,這比按現代規范設計的結果高出約40倍,。這些數據表明新規范對延性構造和能力設計要求是行之有效的,這使得在過去的30年中新建的鋼筋混凝土建筑物的安全性得到明顯改善。通過對延性和非延性結構的安全性比較,有助于出臺新的規章來評估和減輕現有的鋼筋混凝土框架結構建筑物地震倒塌的危險。關鍵詞:倒塌;地震工程;結構可靠度;鋼筋混凝土結構;建筑;商業;地震影響。引言20世紀70年代中期以前加利福尼亞州建設的鋼筋混凝土框架
3、結構缺乏好的抗震設計理念(例如:加強柱子、鋼筋延性構造),這使得它們很容易在地震中發生倒塌。 這些非延性鋼筋混凝土框架結構在經歷了加利福尼亞州1971年圣費爾南多大地震,1979年英皮里爾谷大地震,1987年惠蒂爾納羅斯大地震,1994年北山大地震和世界上其他地方發生的無數地震之后,已經遭受了很嚴重的地震損害。這些因素促使人們關注加利福尼亞州的近40000棟鋼筋混凝土建筑,其中的一部分在未來地震中可能會發生倒塌而危害生命財產安全。然而,我們缺乏足夠的數據來衡量建筑的危險程度,因而無法確定是大量的建筑均存在這種危險,還是只有特定的建筑物才存在危險。一棟建筑物發生倒塌的危險大小,不僅取決于其原設計
4、采用的建筑規范中的規定,也取決于結構布置、施工質量、建筑位置和場地的地震特性。除了需要準確評估倒塌的風險之外,選擇合適的危險承受值和最低的安全標準也是需要考慮的問題。在這方面,通過比較評估根據新老建筑規范設計出的建筑物,能幫我們找到一種評估手段來確定目前設計能夠接受的風險水平。20世紀70年代中期以來,隨著對地震破壞和鋼筋延性的深入了解,建筑規范中對于鋼筋混凝土抗震設計和構造措施的要求發生了顯著變化。同老式非延性鋼筋混凝土框架結構相比,現代規范要求在高地震地區的框架結構要進行各種能力設計來防止或延緩不利的破壞形式(如柱剪切破壞,梁柱節點破壞)。雖然人們普遍同意對于建筑規范的這些修改是適當的,但
5、還是缺少足夠的數據以量化其對地震安全性的改善程度。這項研究采用基于性能的地震工程方法,以評估地震引起非延性鋼筋混凝土框架結構倒塌的可能性。基于性能的地震工程提供了一個概率框架,利用非線性時程模擬將地面運動強度與結構響應和建筑性能聯系起來。對非延性鋼筋混凝土框架結構的評估基于原型結構所做的測試,這套結構是根據1967年統一建筑規范設計的。這些原型結構代表了1950年至1975年間在加州建造的普通鋼筋混凝土框架結構。通過對非延性混凝土框架結構原型的非線性動態分析可以預測倒塌的發生,而在結構倒塌過程中利用仿真模型能夠捕獲強度和剛度的變化特征。抗倒塌性能評估的成果是一系列保障建筑安全的措施,并將地震中
6、抗倒塌能力與地震災害聯系到一起。我們將這些結果與另一篇配套論文中的關于延性鋼筋混凝土框架結構的數據進行比較。原型鋼筋混凝土框架結構這些非延性鋼筋混凝土框架結構原型考慮了結構高度的變化,結構布置和細部設計,能夠覆蓋加州舊鋼筋混凝土框架結構建筑物設計和性能的的預期范圍。制作原型時,我們查閱了鋼筋混凝土部件和框架的關鍵參數,這些參數是由哈茲爾頓等人通過分析和實驗獲得的。本項研究共制作了26個非延性鋼筋混凝土框架原型建筑物。 本文主要側重于這些設計中的12個,高度從2層到12層變化,并包括具有可替換設計細節的周邊和空間框架側向抵抗系統。原型建筑均設計為有著20厘米平面樓板系統和7.6米柱間距的辦公樓房
7、。2層和4層建筑的平面尺寸為38.1m×53.3m,8層和12層建筑的平面尺寸為38.1m×38.1m。建筑首層層高4.6m,其余層層高4.0m。我們參考了20世紀60年代在加州建設的鋼混建筑的原結構圖,來為原型結構選擇典型的結構部置和幾何形狀。原型僅限于無填充墻的鋼筋混凝土框架,并且在高度和平面上比較規則,沒有出現明顯的強度或剛度突變。非延性鋼混原型結構是按照1967年統一建筑規范中的最高地震烈度區(3區)設計的,那個時代加州的大部分都屬于這個烈度區。二維框架的結構設計是由所需的強度和剛度控制的,應滿足重力和地震荷載組合的要求。設計也符合所有相關的建筑規范要求,包括最大和
8、最小配筋率和最大箍筋間距。1967年統一建筑規范規定,如果采用了延性構造措施,可以適當地減小基底剪應力。然而,本研究并沒有進行這種折減,只考慮標準的細部構造。表1總結了每個結構的設計細節,在Liel 和Deierlein處可以獲得非延性鋼混原型的完整資料。有4個4層和12層的原型做了細部加強,這會在隨后的文章里作介紹。我們將非延性原型鋼混框架結構的抗倒塌性能與配套論文中的延性原型鋼混結構做了對比。如表2總結,這些延性框架的設計依據了國際建筑規范(ICC 2003)、ASCE 7 (ASCE 2002),、和 ACI 318 (ACI 2005)中的規定,并符合所有相關規范中關于強度,剛度,承載
9、能力和特殊框架構造的要求。這些結構得益于自20世紀70年代以來鋼筋混凝土抗震設計規范不斷增加的條款,包括各種關于能力設計的規定(例如:強柱弱梁,節點抗剪承載力設計)和構造措施的改進(例如,在梁柱塑性鉸區增加橫向約束,提高對搭接的要求,閉合箍筋)。這套延性鋼混框架是按照在土壤類型為Sd類的典型高震洛杉磯場地設計的,它處在2003版IBC設計地圖的過渡區域。表1 原型延性和非延性框架的設計屬性附注:a) 1967年統一建筑規范(UBC)中設計基底剪切系數取值為C=0.05/T(1/3)0.10。對于抵抗力矩的框架T=0.1N,N是層數(ICBO 1967);b) 現代建筑的設計基底系數根據設計場地
10、的反應譜取值。洛杉磯場地的設計反應譜SDS=1.0g,SD1=0.60g。計算式采用的周期根據規范公式T=0.06hn0.9算得,hn是結構的高度(英尺),并且規定了計算周期的上限(Cu=1.4)(ASCE 2002);c) 柱子的屬性沿結構高度變化,此處列出的是首層柱子的屬性;d) 各構件橫向鋼筋的配置由所需的剪切強度確定。每個位置至少有兩根3號鋼筋;e) 延性鋼筋混凝土框架橫向鋼筋的配置由所需的剪切強度確定。所有的彎錨都有抗震構造,并使用4號鋼筋(ACI 2005);f) 梁屬性沿結構的高度變化,此處列出的是第二層梁的屬性;g) 所設計結構的梁柱構造優于平均水平;h) 所設計結構的節點構造
11、由于平均水平。表2 原型延性和非延性框架的建模參數附注:a) 此處列出的是首層柱的參數;b) 軸向荷載包括恒荷載和25%的活荷載;c) 有效割線剛度為通過40%屈服強度時的割線剛度;d) 滯后能量耗散的計算公式為Et=Myy;e) 參數獲得于對結構模型的特征值分析;f) 所設計結構梁柱的構造優于平均水平;g) 所設計結構的節點構造優于平均水平。對比表1所示的結構,我們可以看出在過去四十年間鋼筋混凝土框架抗震設計規范的變化。盡管對設計基底剪力的方程進行了修改,但對于相同高度的延性和非延性鋼混框架結構,計算的結果還是相當接近的,只有在計算最矮的結構時才有較大的偏差。兩組建筑物之間明顯的差別是部件的
12、設計和構造措施,特別是在數量、布局、和橫向加固方面。現代鋼混框架結構受剪切能力設計規定的影響,對于箍筋間距有著更嚴格的限制,例如:在延性鋼筋混凝土梁和柱中橫向鋼筋要加密2到4倍。最小配箍率保證了柱子有足夠的強度來延緩樓層機構的形成。因此,在節點處柱強度與梁強度的比值延性鋼筋混凝土框架結構平均比非延性鋼筋混凝土框架結構高出約30。非延性鋼混框架結構對于梁柱節點區域的設計或加固也沒有特別規定,而延性鋼混框架結構的柱子則要求規定的尺寸并添加橫向鋼筋,以滿足節點剪力的需要。為滿足特殊框架結構對節點剪切強度的要求,通常增加柱子的尺寸,從而減小軸壓比。非線性仿真模型每個原型非延性鋼混框架的非線性分析模型,
13、都包括一個二維三開間的側向抗力系統,如圖1所示。分析模型能夠體現柱子、梁、梁柱節點材料的非線性和大尺寸效應(P-效應),這對于模擬框架的倒塌時十分重要的。我們用端部部分鉸接的構件模擬梁、柱及其節點,這些鉸被部分約束以模擬真實情況,類似于彈簧鉸。 結構模型不包括任何非結構構件或支撐重力荷載的部件,它們都不屬于橫向支撐系統。本模型是在OpenSees中建造的,該軟件具有強大的計算功能。圖 1. 鋼筋混凝土框架結構分析模型示意圖在另一篇配套論文中,用集中彈簧模擬非彈性的梁、柱、節點,它們是根據三線圖和伊瓦拉等人的滯后原則理想化而來的。根據一系列經驗關系,我們對代表梁和柱構件的非線性彈簧特性進行了預測
14、,這些關系將柱子的設計特征同建模參數聯系起來,并與實驗數據進行了校核。用于改進經驗關系的試驗,包括大量非延性構造的鋼筋混凝土柱。預測的模型參數反映非延性和延性鋼筋混凝土構件的彎矩-轉角行為的差異。正如配套論文中所說的,由于缺少足夠的梁的數據,對于鋼筋混凝土梁的模型參數的校核是建立在柱子在低軸壓水平下被測試的基礎上的。圖2(a)顯示了延性及非延性柱(均為4層建筑)的單調骨干曲線的性質。眾所周知,最大塑性轉角cap,pl對預測倒塌的發生有重要影響,它是柱子約束鋼筋和軸壓水平的函數,延性鋼筋混凝土柱比非延性鋼筋混凝土柱大約大2.7倍。延性鋼筋混凝土柱還有更強的后期旋轉能力(pc),這決定了的柱子屈服
15、后強度退化的速度。圖2(b)表明在一個典型的地震加載過程中,柱的強度和剛度不斷下降。起始曲線的減弱過程由弱化參數控制,這是一個耗能的過程。在非延性柱中由于缺少足夠的約束,并且軸壓荷載更大,其耗能的能力要比延性柱小很多。模型參數需要校準到預期的水平。在分析時需計入重力荷載,并忽略軸向、彎曲、剪切變形之間的相互作用,而這些因素對高層建筑物的影響是十分明顯的。圖 2. 用非彈性彈簧模擬位于4層框架結構首層中的鋼筋混凝土柱,其特點是:(a)單調;(b)循環。表2中為非延性和延性的原型鋼筋混凝土柱的建模參數。鋼筋混凝土梁的屬性也是類似的,它們在其他地方被列出。所有模型元件的屬性值都取為為測試值的中值盡管
16、原型梁和柱的建模參數已經考慮了構件端部的粘結滑移,但它們還是不能模擬到由于非延性框架錨固或搭接失效而引起的顯著破壞。同延性框架設計時限制節點剪切變形不同,非延性框架可能會有明顯的剪切變形而加快倒塌過程。如圖1所示,用非彈性彈簧來模擬節點的剪切行為,模型需遵循單調曲線和滯后原則(與圖2中柱的圖形類似)。參考了僅有極少橫向鋼筋的節點的數據,并結合了其他非延性特性,我們為節點剪切彈簧賦予了屬性。不幸的是, 可獲取的不合格節點的數據是十分有限的。節點剪切強度使用ACI318公式的改進版本進行計算,大小取決于節點尺寸(bj是節點寬度,h是節點高度)、混凝土抗壓強度(fc,單位:psi),約束系數(,取值
17、為1220),公式為:V = 0.7bjh 。根據米特拉和羅斯的實驗數據,我們引進了0.7的修正系數。修正系數反映了具有抗震構造的節點與沒有橫向鋼筋的節點剪切強度的差異。我們假定約束鋼筋混凝土節點呈線彈性變化,但非延性鋼筋筋混凝土卻只有有限的塑性,其內外節點的最大塑性剪切變形分別為0.015和0.010。根據Pantelides等人的研究數據,軸壓比低于0.095的節點可近似看做變形呈線性變化(至 0軸軸向荷載最大值的0.025)。現有數據表明,有效初始剛度大約會下降10%。由于缺少足夠的數據,我們假設鋼筋混凝土梁柱的削弱特性是相同的。表2為計算所得的鋼筋混凝土框架的彈性基本周期,它反映了梁柱
18、的開裂剛度(梁:0.35 EIg;柱:0.350.80 EIg)、節點尺寸和面板柔度。構件的有效剛度對應于達到屈服強度的40%時的變形 ,并包括構件端部的粘結滑移。由于建模時采用的假定不同(有效剛度的取值差異和不考慮重力支撐系統),并且計算結構周期的公式偏于保守,所以計算出的周期會明顯大于按其他簡化公式的計算結果。分析模型的非線性靜態分析結果表明:現代的鋼筋混凝土框架結構比老式的非延性框架結構更堅固,而且有更強的變形能力,從圖3中我們可以清楚地看到對比的結果。分析時荷載采用ASCE 7-05等效地震荷載分布。橫向強度的高低根據安全系數來比較,安全系數是極限強度同設計強度的比值。延性的好壞是根據
19、最大層間位移角來判斷的,即當結構喪失20%橫向強度時的層間位移角。正如表3所示,延性鋼筋混凝土框架與非延性框架相比,安全系數大約高40%,最大層間位移角大3倍。導致延性框架有更強的結構變形能力和更多的安全儲備的原因是:(1)延性構件的變形能力更強;(2)延性框架發生的屈服更多;(3)框架柱的強度更大;(4)梁的屈服耗能更多。圖3(b)表明地震對于建筑低層的破壞更嚴重,在非延性結構中這種現象更為突出。然而非線性靜態分析的方法并不是對動態分析的簡單疊加,實驗結果有助于找到動態分析結果的規律,從而總結出非線性靜態評估的方案。圖 3. 12層延性與非延性鋼筋混凝土框架分析圖:(a)內力-位移響應;(b
20、)最終樓層位移分布。抗倒塌性能評估步驟對非延性鋼筋混凝土原型框架的抗倒塌性能的評估與對延性框架的評估方法相同。用非線性仿真模型的增量動態分析(IDA)來評估抗倒塌性能,通過增大振幅來模擬結構所處的不同地運動。對于每種地運動,當出現過大的層間位移時,我們就認為結構失效。分析過程中,我們對 80種不同的地震記錄進行了測試。評估的結果顯示,結構倒塌的可能性與地震強度呈對數正態分布關系(中位數、標準差),這可以整理為一個計算結構倒塌危險性的函數。但對于地震的記錄不是那么可靠的,這與地震頻譜的不斷變化和地震記錄的特點有關。盡管鋼筋混凝土框架結構的非線性分析模型可以模擬出由梁柱強度、剛度喪失或梁柱節點剪切
21、變形所引起的倒塌,但卻不能直接模擬柱子的剪切破壞。我們期望在測試過程中柱子先屈服后剪切破壞,而不是像非延性短柱那樣直接發生剪切破壞。可觀測的地震破壞和實驗研究表明柱子剪切破化和重力支撐系統的損壞會導致非延性框架連續倒塌。由于難以準確地模擬剪切、彎剪破壞和軸向受荷能力的喪失,所以不能直接模擬出柱子的剪切破壞。對構件極限狀態的后期動態分析,可以檢測出與柱子剪切破壞有關的倒塌模式。從非延性梁柱的實驗數據中可以推導出構件的極限狀態函數,用這個函數可以預測當發生剪切破壞和垂直受荷能力喪失時,柱子的平均位移比(CDR)。這里所說的CDR與層間位移角類似,因為這個函數是建立在柱構件的實驗數據的基礎上的,所以
22、不包括梁旋轉和節點變形對位移的貢獻。當柱子發生彎剪破壞時,構件間的關系我們直接采用已有的研究成果。對于本研究中未進行延性設計構造和軸壓比P/Agfc在0.03到0.35之間的柱子,Aslani 和 Miranda預測當CDR在為0.0170.032rad時,柱子就會發生剪切變形,當然這還與柱子的性質和軸壓下變形能力下降的程度有關。當CDR為0.320.10rad時,柱子的垂直承載能力就會不斷喪失,當然這也與柱子的屬性有關。由于柱子豎向承載能力的喪失會導致結構倒塌,所以我們將這種破壞狀態也歸類于結構倒塌破壞在分析過程中,任何一根柱子的位移超過了按函數計算出的容許值,結構都會進入豎向倒塌臨界狀態。
23、如果在較小強度的地震中,結構更容易發生豎向倒塌,而不是側向倒塌,那么對于倒塌的統計結果就需要更新。柱位移的概率分布是地震強度與構建性能的函數,可以用這種簡化方法將其積分為一個可比較的數值結果。我們假定對于只有側向位移的情況和既有側向位移又有軸向削弱的情況,其倒塌的不確定性是相同的,這是因為它主要是由建模和記錄的不確定性確定的,而不是由構件性能的不確定性。考慮垂直倒塌極限狀態會降低結構預期的抗倒塌能力。圖4是8層鋼筋混凝土框架結構的倒塌概率曲線,分別對應于計入和不計入剪切破壞和由剪切引起的軸向失效的情況。如圖所示,如果考慮柱子的剪切破壞,倒塌的可能性就會比側移模式大大降低。然而,如果我們假設柱子
24、的剪切失效不會直接導致倒塌,而是柱子軸向承壓能力的喪失導致的倒塌,那么這樣的結果只會比只考慮側移的計算結果稍小一點。對本文所研究的非延性鋼筋混凝土框架而言,極限狀態計入豎向承載力的損失比不計入這種損失的統計結果平均小2%30%。圖 4. 8層框架結構的IDA結果分析:(a)增量動態分析時,對于選定的地震,豎向失效模式對抗倒塌能力的影響;(b)只有側移失效時的倒塌概率與既有側移又有豎向失效的倒塌概率對比。記錄變化的計算值為0.35到0.45之間。非線性模擬模型究竟能有多符合實際建筑是不確定的,這就是所謂的建模不確定性,我們通過增加結構倒塌概率的離散度來考慮這種不確定性。Liel等人以前就證明過在
25、評估地震倒塌危險時考慮建模的不確定性是十分重要的,這是因為構件的變形能力、結構的后續變化和建筑倒塌時的明顯的非線性都很大的潛在不確定性。總的不確定性的平方等于記錄不確定性的平方與建模不確定性平方之和:ln,Total2 = ln,RTR2+ln,Modeling2 。這種簡化的方法提供了對倒塌概率合理的估計方法和年平均倒塌頻率。假定建模誤差ln,Modeling = 0.50,則對于原型非延性框架結構總誤差范圍ln,Total = 0.610.67。正如Haselton等人所述,失效概率函數的參數還需要調整以考慮加利福尼亞罕遇地震與一般地震譜型的差異。一般情況下,這種調整會使非延性鋼筋混凝土框
26、架結構的抗倒塌能力增加25%,而延性混凝土框架結構會提高60%。造成這種差異的原因有:(1)非延性框架在倒塌前經歷的周期范圍更窄,這對于譜型發揮有利影響是必需的;(2)非延性框架傾向于在加速度頻譜較小的位置發生倒塌,這個位置對應的地震比較頻繁。 有興趣的讀者可以參考Haselton等人對于該步驟的詳細描述。隨后會討論原型建筑最終的倒塌概率曲線,包含了建模不確定性和譜型調整。評價抗地震倒塌性能的關鍵指標包括:抗倒塌能力的中值、倒塌安全保證率和倒塌的年平均頻率。根據地震強度Sa(T1) (g)我們可以給出抗倒塌能力的中值,大小主要取決于原型的自振周期。用倒塌安全保證率可以更容易地比較結構的抗倒塌性
27、能,它是在50年范圍內超越概率為2%的地震強度Sa2/50(T1)下,結構抗倒塌性能的中值。Sa2/50作為標準參數,是確定大多數場地需考慮的最大地震強度的依據。第三個指標是倒塌的年平均頻率(collapse),它是通過將倒塌概率函數與特定場地的危險曲線整合后獲得的 。危險曲線代表了在一個選定的場地發生超過某個特定強度的地震的可能性。出于研究目的的考慮,危險曲線定義為在一個洛杉磯盆地的高震場地,其不受近場方向性的影響,而且一般代表高震區域。對特定場地的地震危險性分析將會改變在其他加利福尼亞場地的做出的評估,但對于所有處在1967版統一建筑規范的第3區的場地,其原型建筑的設計是相同的。地震倒塌評
28、估的結果表2 原型延性和非延性框架的建模參數附注:a) 所設計結構梁柱的構造優于平均水平;b) 所設計結構的節點構造優于平均水平。所有原型鋼筋混凝土框架的抗倒塌性能的評估結果在表3中被列出。倒塌評估考慮了側移倒塌(模擬)和垂直失效(未模擬)兩種模式,并且包含了結構建模的不確定性。相應的倒塌危險曲線如圖5 所示,為了方便對比,每座原型建筑的水平軸向地震強度都利用Sa2/50(T1)進行了標準化。倒塌的年平均頻率如圖6所示。除了特定地震強度下的倒塌性能外,表中也列出了樓頂位移比(RDRcollapse)和層間位移比(IDRcollapse)。這些位移是在結構側移倒塌之前的最大地震強度下記錄的。圖
29、5. 倒塌危險曲線:(a)原型鋼筋混凝土四周框架;(b)原型鋼筋混凝土空間框架.圖 6. 原型非延性和延性框架倒塌危險評估的對比(倒塌的年平均頻率)非延性和延性鋼筋混凝土框架評估的對比如表3所總結的,分析結果表明非延性鋼筋混凝土框架的倒塌安全儲備從0.54到0.85,這表明倒塌時強度中值比Sa2/50(T1)強度小。形成對比的是,延性鋼筋混凝土框架的倒塌安全儲備率幾乎大三倍,從1.77到3.07。非延性鋼筋混凝土框架建筑已經計算出了倒塌的年平均頻率為47135×10-4,相當于處在加利福尼亞高震場地的建筑物在50年間發生倒塌的概率為21%50%。對于延性鋼筋混凝土框架建筑,倒塌的年平
30、均頻率為16×10-4,相當于在50年間發生倒塌的概率為0.5%2.9%。一般來說,空間框架比四周框架的倒塌安全儲備要更大,這主要是因為空間框架設計時附屬重力荷載更明顯,有更多的強度富余。倒塌的年平均頻率在圖6中做了進一步的對比,它說明了延性(2003)與非延性(1967)框架建筑倒塌危險的巨大區別。非延性四周框架與延性四周框架相比,發生倒塌的可能性大約大了20倍。非延性空間框架與延性空間框架相比,發生倒塌的可能性大了60倍。圖6還表明即使對于每套建筑倒塌的危險性也有十分明顯的變化,例如2層和8層的非延性空間框架危險指標相差了大約3倍。為了驗證造成倒塌指標差異的可能原因,我們在圖7中
31、將倒塌的年平均頻率與靜態強度富余關系繪出。無論是延性還是非延性框架,倒塌的年平均頻率都是隨著靜態強度富余的減少而增加的,但這個關系在非延性框架中不明顯,年平均頻率的變化遠大于延性框架。由于數據量比較少,變化反映了每個原型設計的獨特性,雖然非延性框架有較大的離散性,我們仍可以從這些對比中得到可靠的結論,隨后的部分將會對非延性框架行為的差異做出更深入的討論。總的來說,從1967的設計到2003的設計中預期抗倒塌能力、延性、一致性的改善反映了近幾十年鋼筋混凝土規范中對于抗震總體設計和構造措施的改變。圖 7. 靜態超強值與倒塌的年平均頻率之間的關系(菱形標志為空間框架):(a)非延性鋼筋混凝土框架;(
32、b)延性鋼筋混凝土框架。抗倒塌性能評估從更深層次反映了倒塌行為與結構整體延性間的關系。參照表3,延性框架在倒塌前的最大樓頂位移比(RDRcollapse)為1.6%7.5%。這些值大約比非延性框架(RDRcollapse = 0.6% to 2.8%)大2.4倍相應的延性框架倒塌前的層間位移比非延性框架大1.8倍。造成這些不同的部分原因是構造措施的改進使構件變形能力的增加,如表2所示。1967年到 2003年設計中的RDRcollapse的增大也表明了現代建筑要求的強柱弱梁比有助于將破壞擴散到更大的范圍,增加結構的能量耗散和改善體系的延性。圖8中是8層和12層原型框架的倒塌模式對比。非延性框架
33、建筑一般只在第一層和第二層發生破壞,然而現代延性框架會發生更分散的屈服和失效模式。圖 8. 原型空間框架預期的側移倒塌模式簡圖非延性鋼筋混凝土框架抗倒塌性能的變化這套原型非延性鋼筋混凝土框架設計上的區別導致了預期抗倒塌性能的變化,代表了具有一般幾何形狀和設計特點的非延性鋼筋混凝土框架性能的可能范圍。四周框架結構和短的空間框架結構的抗倒塌性能最差。四周框架結構的抗倒塌安全性隨著高度逐漸削弱,這是因為側向荷載會隨著建筑高度的增加逐漸成為設計的控制因素,而這會使側向超強值降低。與此相反,在空間框架和較短的建筑的設計中重力荷載更為重要,間接提供了額外的側向強度富余。因此,相對較小的基底抗剪承載力和剛度
34、的累積效應使較高的四周框架對于P-效應更敏感。空間框架比四周框架更有可能因為剪切破壞而引起重力承荷能力的損失,這種破壞模式未在被模擬。然而,本研究將四周框架與空間框架性能之間的區別放大了,這是因為四周框架體系的模擬模型忽略了重力體系構件(例如:無梁樓板和內部承重柱)對側向強度和剛度的作用。Haselton等人發現在倒塌評估時考慮承重體系,會使4層現代框架結構的抗倒塌能力中值提高大約10%。除了考慮建筑高度和框架體系的變化外,與典型結構相比有著較好構造措施的非延性框架結構也被認為是本研究的研究對象。到十九世紀六十年代,工程師們開始意識到抗震構造的重要性,在一些設計中,他們選擇施加更多的橫向鋼筋,
35、并加強了 梁、柱或節點處鋼筋的錨固。這些理念被Blume等人在報告中提出,并在“加利福尼亞實踐”中被實施。通過考慮兩種設計的變體來檢驗采用更好構造措施的影響首先,假定柱子的箍筋在節點處連續(表1中4Sh 和 12Sh)。現代標準對節點處橫向鋼筋有著嚴格的規定,但在1967年的統一建筑規范中卻沒有相關確定。在非線性分析模型中,假定額外的節點橫向鋼筋會使節點抗剪強度提高20%。第二種設計變體假設梁柱箍筋間距縮小33%,這表示橫向鋼筋的使用量會增加50%。這種變化會增加鋼筋混凝土構件的塑性和最大扭轉能力,并減小循環強度和剛度退化,如表2所示。對有著較好構造的原型結構評估的抗倒塌性能在表3中被列出,并
36、與從4層和12層原型空間框架所獲得的結果做比較。對于節點橫向鋼筋的規定只使4層框架的倒塌安全提高了11%,卻使12層框架的倒塌安全提高了57%。之所以12層框架提高的更多,是因為節點強度的增強足以使損傷從節點轉移到延性更好的梁和柱上。除了增加局部延性,這種變化還會使地震損傷延建筑高度更廣泛地分布(表3中12S和12Sb RDRcollapse的增加表明了這種變化)。梁柱橫向鋼筋數量的增加導致了4層框架倒塌安全度增加了33%,12層框架倒塌安全度增加了12%。梁柱更好的構造通過增強構件變形能力和消除由于剪切破壞引起柱子倒塌的可能性,來達到增強抵抗側移倒塌能力的目的。盡管如此,設計和構造分析的結果
37、表明為使抗倒塌能力明顯提高仍需進一步的改善。結論本研究評估處在地震區域的鋼筋混凝土框架的抗倒塌性能的方法是設計、模擬和評估兩套原型鋼筋混凝土框架結構(現代延性框架和老式非延性框架)。原型框架高度變化從2層到12層,框架體系分為四周框架和空間框架。它們是按照1967年的統一建筑規范(UBC)和2003年的國際建筑規范(IBC)中的規定設計的,代表了各自時代具有抗震設計的框架結構。采用非線性模型來尋找因設計和構造特性而引起的性能上的區別。正如預想的那樣,對于任意高度和體系類型,延性框架(2003)都要明顯優于非延性框架(1967)。現代框架結構能夠經受住更大烈度的地震,在倒塌前會發生更明顯的變形。
38、延性框架的倒塌安全比比非延性框架大約大3倍。按照倒塌的年平均頻率,在典型加利福尼亞高震場地的非延性框架倒塌的危險性是非延性框架的40倍。對現代延性建筑體系與既存非延性體系抗倒塌性能的對比評估為衡量易受地震影響的老舊建筑的安全性提供了依據。在過去40年間鋼筋混凝土框架抗震性能有了大幅度提升,這要歸功于單個構件構造的改進(橫向鋼筋間距減小,封閉地震鉤的使用,節點橫向鋼筋)和整體設計的要求(強柱弱梁比,其他能力設計要求)。現代鋼筋混凝土框架梁、柱和節點的鋼筋構造提高了構件的變形能力,減弱了隨結構變形發生的強度和剛度的退化。能力設計防止剪切破壞和節點剪切變形的發生,并促進柱子屈服,使損傷和能量耗散沿著
39、延性框架的高度更均勻地分布。這些構件和整體水平的改進導致了研究中倒塌安全結果的不同。抗倒塌性能評估也用來證明對于非延性框架結構預期抗震性能的多變性。在這套規則的評估結構中,較高的四周型非延性框架結構最易發生側移倒塌,這是因為他們的側向超強值和柔度都比較小。空間框架的柱子承受了更大的軸向荷載,可能會發生柱子的剪切破壞和柱子承荷能力的損失,而導致結構較早地倒塌。本研究沒有考慮高度不規則或設計施工有缺陷的結構,它們的抗震性能可能會更差。十九世紀六十年代加利福尼亞地區采用了一些構造措施在一定程度上改善了非延性鋼筋混凝土框架的抗震性能,但與現代規范相比仍有較大差距。在結果的推導,地震特性的描述,結構系列
40、的識別和建立簡化分析模型時我們都采用了各種各樣的近似處理。盡管本研究進行了詳細的分析,但仍有很多因素被忽略。例如,在四周框架中平面板重力體系提供的附加側向抗力就沒有被納入模擬分析。此外,這些原型設計也沒有考慮這些舊式建筑的設計師在規范的基礎上對結構進行的加強。但與此相反,分析中也忽略了很多其他的破壞模式,如:搭接處的錨固破壞,柱子的傾覆,柱節點的沖剪破壞等。由于地震危害特點的不同,對于加利福尼亞不同的場地結論也會有所不同。抗倒塌性能評估結果的準確性是簡化近似值的函數。結構建模和地震參數的巨大不確定性使本研究中對倒塌危險的測量值相對偏高。然而,倒塌能力參數的相對值和比較為地震安全提供了更重要的指
41、標。倒塌性能評估結果驗證了預期的設想:非延性鋼筋混凝土結構更易遭到破壞。結果還將現代延性結果與老式非延性結構安全性上的區別做了系統的量化處理。本研究所獲得的非延性框架結構地震倒塌危險的參數可以被用于評估加利福尼亞地區的地震安全性。聯邦政府已經出臺了規定要求評估,改造或拆除無鋼筋砌體結構。利用本研究的數據,并對改造或拆除進行成分效益評估,有助于評估有關消除非延性框架結構倒塌危險的政策的效果和確定最危險的建筑缺少對預期安全度和可接受危險程度的規定仍是政策的一個漏洞,我們可以通過本研究這樣的基于性能的工程評估來彌補這個漏洞。鳴謝PEER中心通過國家自然基金的“地震工程研究中心計劃”和應用技術委員會的
42、“聯邦緊急事務署P695 (ATC-63)計劃”資助了本研究。此外,“斯坦福研究生獎學金”和“NSF研究生獎學金計劃”也對本文作者進行了資助。作者感謝來自PEER,ATC和FEMA的合作者的參與及貢獻,并鳴謝Jack Baker、 Brian Dean、 Charles Kircher、 Helmut Krawinkler、Eduardo Miranda、C. Marc Ramirez及三位匿名審稿人的建設性意見。參考文獻【1】 American Concrete Institute (ACI). (2005). “Building code requirements for structur
43、al concrete.” ACI 318, Farmington Hills, MI. 【2】 ASCE. (2002). “Minimum design loads for buildings and other structures.” ASCE 7-02, Reston, VA. 【3】 Aslani, H., and Miranda, E. M. (2005). “Probabilistic earthquake loss estimation and loss disaggregation in buildings.” Blume TR 157, Stanford Univ., P
44、alo Alto, CA. 【4】 Blume, J. A., Newmark, N. M., and Corning, L. H. (1961). Design of multistory reinforced concrete buildings for earthquake motions, Portland Cement Association, Chicago, 318.【5】 Degenkolb, H., and Scott, S. (1994). Connections: The EERI Oral History Series, Earthquake Engineering R
45、esearch Center, Oakland, CA. 【6】 Deierlein, G. G. (2004). “Overview of a comprehensive framework for earthquake performance assessment.” Proc., Int. Workshop on Performance-Based Seismic DesignConcepts and Implementation, PEER Rep. 2004/05, P. Fajfar, and H. Krawinkler, eds., Pacific Engineering Res
46、earch Center, Berkeley, CA, 1526. 【7】 Elwood, K. (2004). “Modeling failures in existing reinforced concrete columns.” Can. J. Civ. Eng., 31(5), 846859.【8】 Elwood, K., and Moehle, J. (2005). “Drift capacity of reinforced concrete columns with light transverse reinforcement.” Earthquake Spectra, 21(1)
47、, 7189. ISI【9】 Goulet, C. A., et al. (2007). “Evaluation of the seismic performance of a code-conforming reinforced-concrete frame buildingFrom seismic hazard to collapse safety and economic losses.” Earthquake Eng. Struct. Dyn., 36(13), 19731997. 【10】 Haselton, C. B., Baker, J. W., Liel, A. B., and
48、 Deierlein, G. G. (2011a). “Accounting for ground-motion spectral shape characteristics in structural collapse assessment through an adjustment for epsilon.” J. Struct. Eng., 137(3), 332344.【11】 Haselton, C. B., and Deierlein, G. G. (2007). “Assessing seismic collapse safety of modern reinforced con
49、crete frame buildings.” Blume Center Technical Rep. No. 156. 【12】 Haselton, C. B., et al. (2008). “An assessment to benchmark the seismic performance of a code-conforming reinforced-concrete moment-frame building.” PEER Rep. 2007/12, Pacific Earthquake Engineering Research Center (PEER), Univ. of Ca
50、lifornia at Berkeley, Berkeley, CA.【13】 Haselton, C. B., Liel, A. B., Deierlein, G. G., Dean, B. S., and Chou, J. H. (2011b). “Seismic collapse safety of reinforced concrete buildings. I: Assessment of ductile moment frames.” J. Struct. Eng., 137(4), 481491.【14】 Haselton, C., Liel, A., Taylor Lange,
51、 S., and Deierlein, G. G. (2008). “Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings.” PEER Rep. 2007/03, Pacific Earthquake Engineering Research Center (PEER), Univ. of California at Berkeley, Berkeley, CA. 【15】 Ibarra, L. F., Medina, R. A., and Krawinkler, H. (2005). “Hysteretic models that incorporate strength and stiffness deterioration.” Earthquake Eng. Struct. Dyn., 3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 資格認證考試的考前準備指南試題及答案
- 項目執行中的協作精神試題及答案
- 國際金融理財師考試課程安排與試題答案
- 跟隨時代步伐注冊會計師考試新技能掌握試題及答案
- 2025年特許金融分析師考試統計學應用試題及答案
- 員工薪酬福利晉升規定計劃
- 學科競賽組織與實施計劃
- 年度工作計劃的長期發展目標
- 成員招募及留存的有效方法計劃
- 項目團隊效能提升方法考題及答案
- 一年級信息技術下冊 在網上交流信息教學設計 清華版
- 廣東省2024-2025學年佛山市普通高中教學質量檢測政治試卷及答案(二)高三試卷(佛山二模)
- 11.1 杠桿 課件 2024-2025學年教科版物理八年級下學期
- 搶救工作制度課件
- LOGO更換普通夾板作業課件
- 2025年415全民國家安全教育日主題班會課件
- 山東省東營市東營區勝利第一初級中學2024-2025學年九年級下學期一模英語試卷(含答案無聽力原文及音頻)
- 臨床決策支持系統在路徑優化中的實踐案例
- 漢服實體店創業計劃書
- 2025-2030中國滑雪板行業深度調研及投資前景預測研究報告
- 婦產科課件-早產臨床防治指南(2024)解讀
評論
0/150
提交評論