




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、Pattern ClassificationAll materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors and the publisherChapter 2 (part 3)Bayesian Decision Theory (Sections 2-6,2-9) Discriminant Fu
2、nctions for the Normal Density Bayes Decision Theory Discrete FeaturesPattern Classification, Chapter 2 (Part 3)2Discriminant Functions for the Normal DensityWe saw that the minimum error-rate classification can be achieved by the discriminant functiongi(x) = ln P(x | i) + ln P(i)Case of multivariat
3、e normal)(lnln212ln2)()(21)(1iiiitiiPdxxxgPattern Classification, Chapter 2 (Part 3)3Case i = 2I (I stands for the identity matrix) What does “i = 2I” say about the dimensions?What about the variance of each dimension?normEuclidean thedenotes where)(ln2)(:osimplify tcan weThus)(lnln212ln2)()(21)(in
4、oft independen are ln (d/2) and both :Note221iiiiiiiitiiPxgPdxxxgiPattern Classification, Chapter 2 (Part 3)4We can further simplify by recognizing that the quadratic term xtx implicit in the Euclidean norm is the same for all i.)category!th for the threshold thecalled is ()(ln21 ; :wherefunction)nt
5、 discrimina(linear )(02020iiiitiiiiitiiPwwxgwxwPattern Classification, Chapter 2 (Part 3)5A classifier that uses linear discriminant functions is called “a linear machine”The decision surfaces for a linear machine are pieces of hyperplanes defined by:gi(x) = gj(x)The equation can be written as: wt(x
6、-x0)=0Pattern Classification, Chapter 2 (Part 3)6The hyperplane separating Ri and Rjalways orthogonal to the line linking the means!)()()(ln)(21220jijijijiPPx)(21 then )()( 0jijiPPifxPattern Classification, Chapter 2 (Part 3)7Pattern Classification, Chapter 2 (Part 3)8Pattern Classification, Chapter
7、 2 (Part 3)9Pattern Classification, Chapter 2 (Part 3)10Case i = (covariance of all classes are identical but arbitrary!)Hyperplane separating Ri and Rj(the hyperplane separating Ri and Rj is generally not orthogonal to the line between the means!).()()()(/ )(ln)(21and)(Where0)(equation theHas100tji
8、jitjijijijiPPxwxxw1Pattern Classification, Chapter 2 (Part 3)11Pattern Classification, Chapter 2 (Part 3)12Pattern Classification, Chapter 2 (Part 3)13Case i = arbitrary The covariance matrices are different for each categoryThe decision surfaces are hyperquadratics(Hyperquadrics are: hyperplanes, p
9、airs of hyperplanes, hyperspheres, hyperellipsoids, hyperparaboloids, hyperhyperboloids)(Plnln2121 w w21W :wherewxwxWx)x(g iii1iti0ii1ii1ii0itiiti Pattern Classification, Chapter 2 (Part 3)14Pattern Classification, Chapter 2 (Part 3)15Pattern Classification, Chapter 2 (Part 3)16Bayes Decision Theory
10、 Discrete FeaturesComponents of x are binary or integer valued, x can take only one of m discrete values v1, v2, , vm concerned with probabilities rather than probability densities in Bayes Formula:cjjjjjjPPPPPPP1)()|()(where)()()|()|(xxxxxPattern Classification, Chapter 2 (Part 3)17Bayes Decision T
11、heory Discrete FeaturesConditional risk is defined as before: R(a|x)Approach is still to minimize risk:)|(minarg*xiiRaaPattern Classification, Chapter 2 (Part 3)18Bayes Decision Theory Discrete FeaturesCase of independent binary features in 2 category problemLet x = x1, x2, , xd t where each xi is e
12、ither 0 or 1, with probabilities:pi = P(xi = 1 | 1)qi = P(xi = 1 | 2)Pattern Classification, Chapter 2 (Part 3)19Bayes Decision Theory Discrete FeaturesAssuming conditional independence, P(x|i) can be written as a product of component probabilities:dixiixiidixixidixixiiiiiiiqpqpPPqqPppP112111211111)|()|(:bygiven ratio likelihood a yielding)1 ()|(and)1 ()|(xxxxPattern Classification, Chapter 2 (Part 3)20Bayes Decision Theory Discrete FeaturesTaking our likelihood ratio)()(ln11ln)1 (ln)(:yields)()(ln)|()|(ln)(31 Eq. intoit plugging and11)|()|(21121211121ppqpxqpxgppppgqpqpPPdiiiiiiid
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國際貿(mào)易代理基礎(chǔ)知識考核試卷
- 珠寶首飾表面處理技術(shù)考核試卷
- 玻璃制品耐候性測試與優(yōu)化考核試卷
- 稻谷種植農(nóng)業(yè)氣象服務(wù)需求與供給考核試卷
- 新材料新技術(shù)引領(lǐng)可持續(xù)發(fā)展的新方向考核試卷
- 果蔬汁飲料的企業(yè)文化與品牌建設(shè)考核試卷
- 紡織企業(yè)成本分析與控制考核試卷
- 勞務(wù)派遣企業(yè)招聘渠道分析與優(yōu)化考核試卷
- 濟(jì)南大學(xué)《模特經(jīng)紀(jì)管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 江西服裝學(xué)院《嬰幼兒護(hù)理與急救》2023-2024學(xué)年第二學(xué)期期末試卷
- GB/T 24477-2025適用于殘障人員的電梯附加要求
- 瓦斯超限停電、停產(chǎn)撤人、分析查明原因、追查處理制度
- 風(fēng)力發(fā)電項目合作框架協(xié)議
- 2025-2030中國PH傳感器行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2025福建詔安閩投光伏發(fā)電有限公司招聘4人筆試參考題庫附帶答案詳解
- 2024年黑龍江牡丹江中考滿分作文《以熱忱心報家國》
- 文件打印流程表格:文件打印申請、審核流程
- 考古調(diào)查勘探輔助工程方案投標(biāo)文件(技術(shù)方案)
- 電位滴定法課件
- 歷年計算機(jī)二級MS-Office考試真題題庫大全-下(500題)
- 2024年AI大模型產(chǎn)業(yè)發(fā)展與應(yīng)用研究報告
評論
0/150
提交評論