




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、 在化簡、求值、證明恒等式(不等式)、解方程(不等式)的過程中,常需將代數式變形恒等變形,沒有統一的方法,需要根據具體問題,采用不同的變形技巧,使證明過程盡量簡潔,一般可以把恒等變形分為兩類:一類是無附加條件的,需要在式子默認的范圍中運算;另一類 是有附加條件的,要善于利用條件,簡化運算恒等式變形的基本思路:由繁到簡(即由等式較繁的一邊向另一邊推導)和相向趨進(即將等式兩邊同時轉化為同一形式) 恒等式證明的一般方法: 1單向證明,即從左邊證到右邊或從右邊證到左邊,其原則是化繁為簡,變形的過程中要不斷注意結論的形式,調整證明的方向 2雙向證明,即把左、右兩邊分別化簡,使它們都等于第三個代數式3運
2、用“比差法”或“比商法”,證明“左邊一右邊=0"或(右邊O)”,可得左邊d右邊 4運用分析法,由結論出發,執果索因,探求思路,本節結合實例對代數式的基本變形(如配方、因式分解、換元、設參、拆項與逐步合并等)方法作初步介紹,題1 求證 :對同底數冪進行合并整理,解方法一:左邊=右邊,方法二:左邊右邊故左邊=右邊方法一中受右邊的提示,對左邊式子進行合并時,以與為主元合并,迅速便捷讀一題,練3題,練就解題高手1-1已知求證:1-2已知證明:1-3證明:題2 經研究,這個問題的一般結論是其中,n為整數,現在我們來研究一個類似的問題: 觀察下面三個特殊的等式:將這三個式子兩邊相加(累加),可得
3、 讀完這段材料,請您思考回答:=(只寫出結果,不必寫出中間的過程)分析此題可得到如下信息:解(2)由類比思想知則在解題時要善于利用類比推理思想,理解并記住一些常用的一般性結論,如讀一題,練3題,練就解題高手2-1已知n是正整數,是反比例函數圖象上的一列點,其中記若則的值是2-2我們把分子為1的分數叫做單位分數,如任何一個單位分數都可以寫成兩個不同的單位分數的和,如(1)根據對上述式子的觀察,你會發現請寫出所表示的數;(2)進一步思考,單位分數(n是不小于2的正整數)=請寫出所表示的代數式,并加以驗證2-3已知都是正數,試比較M與N的大小題3 已知互不相等,求證本題可設然后求解解設則故以上三式相
4、加,得即本題運用了連比等式設參數k的方法,這種引入參數的方法是恒等式證明中的常用技巧,讀 一題,練1題,決出能力高下3-1已知則題4 證明 本題看似復雜,但是仔細分析各項特征,可嘗試使用多變量換元法解令則原待證恒等式轉化為聯想到公式由+,得故即原式得證換元法的使用可以使題目條件更趨簡潔,更易把握題目特點讀一題,練3題,沖刺奧數金牌4-1試用x+l的各項冪表示4-2已知且求證:4-3解方程:題5 設x,y,z互為不相等的非零實數,且求證:由于結論為的形式,可以從題設 式中導出x,y,z乘積的形式xy,yz,zx解由變形可得則同理可得由××,得本題中x,y,z具有輪換對稱的特點,也可從二元情形中得到啟示:即令x,y為互不相等的非零實數,且易推出故有所以三元與二元情形類似讀一題,練3題,沖刺奧數金牌5-1若實數x,y,z滿足則xyz=5-2已知求的值5-3已知實數a,b,c,d互不相等,且試求x的值,題6 已知 由待證式知要從題設條件中消去y 解由已知,得兩式相乘,得即所以故綜合考查條件結論,充分挖掘隱含信息,常會成為解題的關
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 空氣源熱泵與燃氣鍋爐雙熱源供暖系統運行調控策略研究
- 代賣藥品合同樣本
- 加工項目合同樣本
- 制衣工廠加工合同標準文本
- 出租車轉讓車位合同范例
- 電商助農合同履約金協議
- 農村小本養殖貸款合同標準文本
- 屋面防水維護合同
- 策展人勞務合同
- 前期物業管理合同標準文本
- 2025至2030年石榴養生酒項目投資價值分析報告
- 招投標綜合實訓心得
- 廣西壯族自治區桂林市2025屆高三下學期第一次跨市聯合模擬考試語文試題(含答案)
- 2025-2030MicroLED顯示器行業市場現狀供需分析及投資評估規劃分析研究報告
- 手榴彈投擲實施教案
- 青年教師教學能力比賽實施方案
- 2024年四川農信招聘筆試真題
- 2025年中國螺旋埋弧焊管行業發展前景預測及投資戰略咨詢報告
- 2025年03月江蘇南通市如東縣事業單位公開招聘120人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 【杭州】2024年浙江杭州市蕭山區第四次機關事業單位公開招聘編外人員51人筆試歷年典型考題及考點剖析附帶答案詳解
- 長沙2025年湖南長沙縣招聘機關事業單位工作人員26人筆試歷年參考題庫附帶答案詳解
評論
0/150
提交評論