




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、我國水利水電工程高邊坡的加固與治理(1) 摘要:我國廣大水電建設者在與滑坡災害作斗爭的過程中不斷總結經驗教訓,開展科技攻關,總結出了一整套水電高邊坡工程勘測、設計、施工新技術。通過混凝土抗滑樁、混凝土沉井、預應力錨索、錨桿、以及減載、排水等加固、治理邊坡的方式和措施的應用,成功地建成了天生橋二級、三峽、李家峽等復雜的高邊坡工程。 關鍵詞:高邊坡;抗滑結構;錨固;減載;排水;治理;水利水電工程邊坡穩定問題是水利水電工程中經常遇到的問題。邊坡的穩定性直接決定著工程修建的可行性,影響著工程的建設投資和安全運行。我國曾有幾十個水利水電工程在施工中發生過邊坡
2、失穩問題,如天生橋二級水電站廠區高邊坡、漫灣水電站左岸壩肩高邊坡、安康水電站壩區兩岸高邊坡、龍羊峽水電站下游虎山坡邊坡等等。為治理這些邊坡不但耗去了大量的資金,還拖延了工期,成為我國水利水電工程施工中一個比較嚴峻的問題,有的邊坡工程甚至已經成為制約工程進度和成敗的關鍵。我國正在建設和即將建設的一批大型骨干水電站,如三峽、龍灘、李家峽、小灣、拉西瓦、錦屏等工程都存在著嚴重的高邊坡穩定問題。其中三峽工程庫區中存在10幾處近億立方米的滑坡體,拉西瓦水電站下游左岸存在著高達700m的巨型潛在不穩定山體,龍灘水電站左岸存在總方量1000萬m3傾倒蠕變體等。這些工程的規模和所包含的技術難度都是空前的。因此
3、,加快水利水電邊坡工程的科研步伐,開發出一套現代化的邊坡工程勘測、設計、施工、監測技術,已經成為水利水電科研攻關的重大課題。高邊坡的地質構造往往比較復雜,影響滑坡的因素也很多,因此,我國廣大水電科技人員在與滑坡災害作斗爭的過程中,不斷總結經驗教訓,積極開展科技攻關,總結出了一整套水電高邊坡工程勘測、設計和施工新技術,成功地治理了天生橋二級、漫灣、李家峽、三峽、小浪底等工程的高邊坡問題。本文僅就水利水電工程巖質高邊坡的加固與整治措施作一簡要介紹。1、混凝土抗滑結構的應用我國在50年代曾在少量工程中試用混凝土抗滑樁技術。從60年代開始,該項技術得到了推廣,并從理論上得到了完善和提高。到80年代,高
4、邊坡中的抗滑樁應用技術已達到了一定的水平。抗滑樁由于能有效而經濟地治理滑坡,尤其是滑動面傾角較緩時,其效果更好,因此在邊坡治理工程中得到了廣泛采用。如:天生橋二級水電站于1986年10月確定廠房下山包壩址后,11月開始在廠房西坡進行大規模的開挖,加上開挖爆破和施工生活用水的影響,誘發了面積約4萬m2、厚度約2540m、總滑動量約140萬m3的大型滑坡體。初期滑動速度平均每日2mm,到次年2月底每日位移達9mm.如繼續開挖而不采取任何工程處理措施,預計雨季到來時將會發生大規模的滑坡,為此,采取了抗滑樁等一整套治理措施。抗滑樁分成兩排布置在廠房滑坡體上,在584m高程上設置1排,在597 m高程平
5、臺上設置1排,樁中心距6m,樁深為2539m,其中心深入基巖的錨固深度為總深度的14,斷面尺寸為3m×4m,設置15kgm輕型鋼軌作為受力筋,回填200號混凝土,每根抗滑樁的抗剪強度為12840kN,17根全部建成后,可以承受滑坡體總滑動推力218280kN.第一批抗滑樁從1987年3月上旬開工,5月下旬開始澆筑,6月1日結束。第二批抗滑樁施工是在19871988年枯水期內完成的。抗滑樁開挖深度達34m后,在井壁噴3040cm厚的混凝土。對巖體較好的井壁采用打錨桿、噴錨掛網的方法進行支護,噴混凝土厚度1015cm.對局部塌方部位增設鋼支撐。抗滑樁開挖到設計要求深度后,進行鋼筋綁扎和鋼
6、軌吊裝。混凝土澆筑采用水下混凝土的配合比,由拌和樓拌和,混凝土罐車運輸直接入倉,每小時澆筑厚度控制在1.5 m內,特別是在滑動面上下4m部位,還需下井進行機械振搗。在澆到離井口57m時,要求分層振搗。每個井口設兩個溜斗,溜管長度為1014m,管徑25cm.抗滑樁的建成,對樁后坡體起到了有效的阻滑作用。天生橋二級水電站廠房高邊坡采用打抗滑樁、減載、預應力錨桿、錨索、排水、護坡等綜合治理措施后,坡體的監測成果表明:下山包滑坡體一直處于穩定狀態,而且有一定的安全儲備。安康水電站壩址區兩岸邊坡屬于穩定性極差的易滑地層,由于對兩岸進行了大規模的開挖施工,所形成的開挖邊坡最大高度達200余m,單坡段一般高
7、度在3040m.大量的開挖造成邊坡巖體的應力釋放,斷面暴露,再加上雨水的侵入,破壞了邊坡的穩定,致使邊坡開挖過程中發生十幾處大小不等的工程滑坡,嚴重地影響了工程的施工,成為電站建設中的重大技術難題。采用抗滑樁是穩定安康溢洪道邊坡的主要手段,在263m高程平臺上共設置了9根直徑1m的鋼筋混凝土抗滑樁,每根樁都貫穿幾個棱體,最深的達35m,樁頂嵌入溢洪道渠底板內。為了不干擾平臺外側基坑的施工,樁身用大孔徑鉆機鉆成,孔壁完整,進度較快,兩個月就全部完成。這9根抗滑樁按兩種工作狀態考慮:在溢洪道未形成時,抗滑樁按彈性基礎上的懸臂梁考慮,不考慮樁外側滑面上部巖體的抗力;在溢洪道建成后抗滑樁樁頂嵌入溢洪道
8、底板,此時按滑坡的下滑力考慮。抗滑樁混凝土標號為R28250號,鋼筋為40級鋼。抗滑樁于1982年1月施工,3月完成后,基坑繼續下挖,邊坡上各棱體的基腳相繼暴露。同年11月,在Fb75與F22斷層構成的棱體下面坡根爆破開挖后,發現在263m高程平臺上沿Fb75、F22斷層及7號抗滑樁外側近南北向出現小裂縫,且裂縫不斷擴大,21天后7號抗滑樁外側的Fb75F22棱體下滑,依靠7號抗滑樁的支擋,樁內側山體得以保存。沉井是一種混凝土框架結構,施工中一般可分成數節進行。在滑坡工程中既起抗滑樁的作用,有時也具備擋土墻的作用。天生橋二級水電站首部樞紐左壩肩下游邊坡,在二期工程壩基開挖澆筑過程中,曾于198
9、6年6月和1988年2月兩次出現沿覆蓋層和部分巖基的順層滑動。滑坡體長80m,寬45m,高差35m,最大深度9m,方量約2萬m3.為了避免1988年汛后左導墻和護坦基礎開挖過程中滑體再度復活,確保基坑的安全施工,對左岸邊坡的整體進行穩定分析后,決定在坡腳實施沉井抗滑為主和坡面保護、排水為輔的綜合治理措施。 沉井結構設計根據沉井的受力狀態、基坑的施工條件和沉井的場地布置等因素決定,沉井結構平面呈“田”字形,井壁和橫隔墻的厚度主要由滿足下沉重量而定。井壁上部厚80cm,下部厚90cm;橫隔墻厚度為50cm,隔墻底高于刃腳踏面1.5m,便于操作人員在井底自由通行。沉井深11m,分成4、3、4m高的3
10、節。沉井施工包括平整場地、沉井制作、沉井下沉、填心4個階段。下沉采用人工開挖方式,由人力除渣,簡易設備運輸,下沉過程中需控制防偏問題,做到及時糾正。合理的開挖順序是:先開挖中間,后開挖四邊;先開挖短邊,后開挖長邊。沉井就位后清洗基面,設置25錨桿(錨桿間距為2m,深3.5m),再澆筑150號混凝土封底,最后用100號毛石混凝土填心。沉井工程建成至今,已經受了多年的運行考驗。目前,首部邊坡是穩定的,沉井在邊坡穩定中的作用是明顯的。混凝土框架對滑坡體表層坡體起保護作用并增強坡體的整體性,防止地表水滲入和坡體的風化。框架護坡具有結構物輕,材料用量省,施工方便,適用面廣,便于排水,以及可與其他措施結合
11、使用的特點。天生橋二級水電站下山包滑坡治理采用混凝土護面框架,框架分兩種型式。滑面附近框架,其節點設長錨桿穿過滑面,為一設置在彈性基礎上節點受集中力的框架系統;距滑面較遠的坡面框架,節點設短錨桿,與強風化坡面在一定范圍內形成整體。下山包滑坡北段強風化坡面框架采用50×50cm、節點中心2m的方形框架,節點處設置兩種類型錨桿:在550560m高程間坡面,滑面以上節點垂直于坡面設置36及32、長12m砂漿錨桿,在565580m高程間坡面則設垂直于坡面的28、長6m的砂漿錨桿,相應地框架配筋為820和420.框架要求在坡面挖30cm深,50cm寬的槽,部分嵌入坡面內,表層填土并摻入耕植上,
12、形成草本植被的永久護坡。在巖性較好的部位可采用錨桿和噴混凝土保護坡面。混凝土擋墻是治坡工程中最常用的一種方法,它能有效地從局部改變滑坡體的受力平衡,阻止滑坡體變形的延展。在1986年6月,天生橋二級水電站工程下山包廠址未定之前,由于連降大雨(其降雨量達91.2mm),550m高程夾泥層上面的巖體滑動10余cm,584m高程平臺上出現3條裂縫,其中最長一條55m長,2.2cm寬,下錯2cm.為此采取了在550m高程澆筑50余m長的混凝土擋墻和打錨桿等措施。天生橋二級水電站廠房高邊坡坡頂設置了混凝土擋土墻,以防止古滑坡體的復活,部分坡面采用漿砌塊石護面加固,坡腳680m高程設置混凝土防護墻。在漫灣
13、水電站邊坡工程中也采取了澆混凝土擋墻及漿砌石擋墻、混凝土防掏槽等措施,綜合治理邊坡工程。在漫灣水電站邊坡工程中,采用各種不同斷面的錨固洞64個,形成較大的抗剪力。在左岸邊坡滑坡以前,已完成2 m×2m斷面小錨固洞18個,每個洞可承受剪力9000kN.此外,還利用地質探洞回填等增加一部分剪力。由于錨固洞具有一定的傾斜度,防止了混凝土與洞壁結合不實的可能性,同時采取洞樁組合結構的受力條件遠較傳統懸臂結構合理,可望提供較大的抗力。2、錨固技術的應用采用預應力錨索進行邊坡加固,具有不破壞巖體,施工靈活,速度快,干擾小,受力可靠,且為主動受力等優點,加上坡面巖體抗壓強度高,因此,在天生橋二級、
14、漫灣、銅街子、三峽、李家峽等工程的邊坡治理中都得到大量應用。在漫灣水電站邊坡工程中,采用了1000kN級錨索1371根、1600kN級錨索20根、3000kN級錨索859根、6000kN級錨索21根,均為膠結式內錨頭的預應力錨索,采取后張法施工。預應力錨索由錨索體、內錨頭、外錨頭三部分組成。內錨頭用純水泥漿或砂漿作膠結材料,其長度1 000 kN級為56m,3000kN級為810m,6000kN級為1013m;外錨頭為鋼筋混凝土結構,與基巖接觸面的壓應力控制在2.0 MPa以內。為提高錨索受力的均勻性,漫灣工程施工單位設計了一種小型千斤頂,采用“分組單根張拉”的方法,如3000kN錨索19根鋼
15、絞線,每組拉3根,7次張拉完;6000kN錨索37根,10次張拉完,既簡化操作程序,又提高錨索受力均勻性。錨索在補償張拉時可以用大千斤頂整體張拉(如3000kN錨索),也可繼續用分組單根張拉方法(如6000kN錨索),都不會影響錨索受力的均勻性。在小浪底工程中大規模采用的無粘結錨索具有明顯的優點,其大部分鋼絞線都得到防腐油劑和護套的雙重保護,并且可以重復張拉。由于在施工時內錨頭和鋼鉸線周圍的水泥漿材是一次灌入的,漿材凝固后再張拉,因此減少了一道工序,提高了工效,但其價格相對較高。在高邊坡施工過程中為保證開挖與錨固同步施工,必須縮短錨索施工時間,及早對巖體施加預應力,以達到加快工程進度,確保邊坡
16、穩定的目的。為此,結合八五科技攻關,在李家峽水電站高邊坡開挖過程中,成功將1000kN級預應力錨索快速錨固技術應用于工程中。室內和現場試驗表明,采用N-1注漿體和Y-1型混凝土配合比可以滿足1000kN級預應力錨索各項設計技術指標,而施加預應力的時間由常規的1428d縮短到35d.該項成果對及時加固高邊坡蠕變和松弛的巖體具有重要的現實意義,充分體現了“快速、經濟、安全”的原則。三峽永久船閘主體段高邊坡工程規模之大、技術難度之高均為國內外邊坡工程所罕見,其加固過程中,采取了噴混凝土、掛網錨桿、系統錨桿、打排水孔、設置排水洞、采用3000kN級預應力錨索等綜合治理措施,其中,3000kN對穿錨束1924束,在國內尚屬首例。系統設計3000kN級預應力對穿錨束1 229束,孔深22.156.4m,主要分布在南北坡直立墻和中隔墩閘首及上下相鄰段。南北坡直立墻布置兩排,水平排距1020m,孔距35m,第一排距墻頂810m,第二排距底
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國提升機摩擦墊塊數據監測研究報告
- 2025至2030年中國拖斗式藥品柜數據監測研究報告
- 2025至2030年中國手動液壓油泵數據監測研究報告
- 2025至2030年中國強力型輸送膠帶數據監測研究報告
- 2025至2030年中國官燕盞數據監測研究報告
- 2025至2030年中國圓盤飛剪數據監測研究報告
- 2025至2030年中國呼嚕甩鼻清數據監測研究報告
- 2025至2030年中國臥式千斤頂數據監測研究報告
- 體育經紀人與運動員聲譽管理試題及答案
- 2024年體育經紀人更新考綱試題及答案
- 廣東省深圳市福田區2023-2024學年六年級下學期英語期中試卷(含答案)
- 國際貿易實務與案例教程題庫及答案
- 2025新能源考試試題及答案
- 小學思政教育主題班會
- “良知與悲憫”高頻素材積累-2024-2025學年高一語文單元寫作深度指導(統編版必修下冊)
- 2023-2024學年廣東省廣州七中七年級(下)期中數學試卷(含答案)
- 2024山西三支一扶真題及答案
- 2025年北京城市排水集團有限責任公司招聘筆試參考題庫含答案解析
- 技術經紀人(初級)考試試題(附答案)
- 2025年江蘇省南通啟東市江海產業園招聘1人歷年高頻重點提升(共500題)附帶答案詳解
- 大學美育知到智慧樹章節測試課后答案2024年秋長春工業大學
評論
0/150
提交評論