




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.據報道,目前我國“天河二號”超級計算機的運算速度位居全球第一,其運算速度達到了每秒338600000億次,數字338600000用科學記數法可簡潔表示為()A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×1092.如圖,正方形ABCD的邊長為2cm,動點P從點A出發,在正方形的邊上沿A→B→C的方向運動到點C停止,設點P的運動路程為x(cm),在下列圖象中,能表示△ADP的面積y(cm2)關于x(cm)的函數關系的圖象是()A. B. C. D.3.如圖,在矩形ABCD中,E,F分別是邊AB,CD上的點,AE=CF,連接EF,BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC,FC=2,則AB的長為()A.8 B.8 C.4 D.64.如圖分別是某班全體學生上學時乘車、步行、騎車人數的分布直方圖和扇形統計圖(兩圖都不完整),下列結論錯誤的是()A.該班總人數為50 B.步行人數為30C.乘車人數是騎車人數的2.5倍 D.騎車人數占20%5.如圖,在矩形AOBC中,O為坐標原點,OA、OB分別在x軸、y軸上,點B的坐標為(0,3),∠ABO=30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標為()A.(,) B.(2,) C.(,) D.(,3﹣)6.如圖,邊長為2a的等邊△ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是()A. B.a C. D.7.已知函數,則使y=k成立的x值恰好有三個,則k的值為()A.0 B.1 C.2 D.38.小華和小紅到同一家鮮花店購買百合花與玫瑰花,他們購買的數量如下表所示,小華一共花的錢比小紅少8元,下列說法正確的是()百合花玫瑰花小華6支5支小紅8支3支A.2支百合花比2支玫瑰花多8元B.2支百合花比2支玫瑰花少8元C.14支百合花比8支玫瑰花多8元D.14支百合花比8支玫瑰花少8元9.如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數是()A.50° B.60° C.70° D.80°10.下列二次根式中,是最簡二次根式的是()A. B. C. D.11.一次函數y=ax+b與反比例函數,其中ab<0,a、b為常數,它們在同一坐標系中的圖象可以是()A. B. C. D.12.如圖,△ABC中AB兩個頂點在x軸的上方,點C的坐標是(﹣1,0),以點C為位似中心,在x軸的下方作△ABC的位似圖形△A′B′C′,且△A′B′C′與△ABC的位似比為2:1.設點B的對應點B′的橫坐標是a,則點B的橫坐標是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知反比例函數y=(k為常數,k≠0)的圖象經過點A,過A點作AB⊥x軸,垂足為B,若△AOB的面積為1,則k=________________.14.化簡:=_____.15.《孫子算經》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?設有x匹大馬,y匹小馬,根據題意可列方程組為______.16.分解因式:x3﹣2x2+x=______.17.如圖所示,在△ABC中,∠C=90°,∠CAB=50°.按以下步驟作圖:①以點A為圓心,小于AC的長為半徑畫弧,分別交AB,AC于點E,F;②分別以點E,F為圓心,大于EF的長為半徑畫弧,兩弧相交于點G;③作射線AG交BC邊于點D.則∠ADC的度數為.
18.如果,那么代數式的值是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°.求這兩座建筑物的高度(結果保留根號).20.(6分)已知,,,斜邊,將繞點順時針旋轉,如圖1,連接.(1)填空:;(2)如圖1,連接,作,垂足為,求的長度;(3)如圖2,點,同時從點出發,在邊上運動,沿路徑勻速運動,沿路徑勻速運動,當兩點相遇時運動停止,已知點的運動速度為1.5單位秒,點的運動速度為1單位秒,設運動時間為秒,的面積為,求當為何值時取得最大值?最大值為多少?21.(6分)在連接A、B兩市的公路之間有一個機場C,機場大巴由A市駛向機場C,貨車由B市駛向A市,兩車同時出發勻速行駛,圖中線段、折線分別表示機場大巴、貨車到機場C的路程y(km)與出發時間x(h)之間的函數關系圖象.直接寫出連接A、B兩市公路的路程以及貨車由B市到達A市所需時間.求機場大巴到機場C的路程y(km)與出發時間x(h)之間的函數關系式.求機場大巴與貨車相遇地到機場C的路程.22.(8分)我市某中學藝術節期間,向全校學生征集書畫作品.九年級美術王老師從全年級14個班中隨機抽取了4個班,對征集到的作品的數量進行了分析統計,制作了如下兩幅不完整的統計圖.王老師采取的調查方式是(填“普查”或“抽樣調查”),王老師所調查的4個班征集到作品共件,其中b班征集到作品件,請把圖2補充完整;王老師所調查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生.現在要在其中抽兩人去參加學校總結表彰座談會,請直接寫出恰好抽中一男一女的概率.23.(8分)北京時間2019年3月10日0時28分,我國在西昌衛星發射中心用長征三號乙運載火箭,成功將中星衛星發射升空,衛星進入預定軌道.如圖,火星從地面處發射,當火箭達到點時,從位于地面雷達站處測得的距離是,仰角為;1秒后火箭到達點,測得的仰角為.(參考數據:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)求發射臺與雷達站之間的距離;求這枚火箭從到的平均速度是多少(結果精確到0.01)?24.(10分)如圖所示,飛機在一定高度上沿水平直線飛行,先在點處測得正前方小島的俯角為,面向小島方向繼續飛行到達處,發現小島在其正后方,此時測得小島的俯角為.如果小島高度忽略不計,求飛機飛行的高度(結果保留根號).25.(10分)如圖,某大樓的頂部豎有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的傾斜角∠BAH=30°,AB=20米,AB=30米.(1)求點B距水平面AE的高度BH;(2)求廣告牌CD的高度.26.(12分)計算:=_____.27.(12分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.求y與x之間的函數關系式;直接寫出當x>0時,不等式x+b>的解集;若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:數字338600000用科學記數法可簡潔表示為3.386×108故選:A【點睛】本題考查科學記數法—表示較大的數.2、B【解析】
△ADP的面積可分為兩部分討論,由A運動到B時,面積逐漸增大,由B運動到C時,面積不變,從而得出函數關系的圖象.【詳解】解:當P點由A運動到B點時,即0≤x≤2時,y=×2x=x,當P點由B運動到C點時,即2<x<4時,y=×2×2=2,符合題意的函數關系的圖象是B;故選B.【點睛】本題考查了動點函數圖象問題,用到的知識點是三角形的面積、一次函數,在圖象中應注意自變量的取值范圍.3、D【解析】分析:連接OB,根據等腰三角形三線合一的性質可得BO⊥EF,再根據矩形的性質可得OA=OB,根據等邊對等角的性質可得∠BAC=∠ABO,再根據三角形的內角和定理列式求出∠ABO=30°,即∠BAC=30°,根據直角三角形30°角所對的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計算即可求出AB.詳解:如圖,連接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴BC=2,∴AC=2BC=4,∴AB===6,故選D.點睛:本題考查了矩形的性質,全等三角形的判定與性質,等腰三角形三線合一的性質,直角三角形30°角所對的直角邊等于斜邊的一半,綜合題,但難度不大,(2)作輔助線并求出∠BAC=30°是解題的關鍵.4、B【解析】
根據乘車人數是25人,而乘車人數所占的比例是50%,即可求得總人數,然后根據百分比的含義即可求得步行的人數,以及騎車人數所占的比例.【詳解】A、總人數是:25÷50%=50(人),故A正確;B、步行的人數是:50×30%=15(人),故B錯誤;C、乘車人數是騎車人數倍數是:50%÷20%=2.5,故C正確;D、騎車人數所占的比例是:1-50%-30%=20%,故D正確.由于該題選擇錯誤的,故選B.【點睛】本題考查讀頻數分布直方圖的能力和利用統計圖獲取信息的能力;利用統計圖獲取信息時,必須認真觀察、分析、研究統計圖,才能作出正確的判斷和解決問題.5、A【解析】解:∵四邊形AOBC是矩形,∠ABO=10°,點B的坐標為(0,),∴AC=OB=,∠CAB=10°,∴BC=AC?tan10°=×=1.∵將△ABC沿AB所在直線對折后,點C落在點D處,∴∠BAD=10°,AD=.過點D作DM⊥x軸于點M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴點D的坐標為(,).故選A.6、A【解析】
取CB的中點G,連接MG,根據等邊三角形的性質可得BH=BG,再求出∠HBN=∠MBG,根據旋轉的性質可得MB=NB,然后利用“邊角邊”證明∴△MBG≌△NBH,再根據全等三角形對應邊相等可得HN=MG,然后根據垂線段最短可得MG⊥CH時最短,再根據∠BCH=30°求解即可.【詳解】如圖,取BC的中點G,連接MG,∵旋轉角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故選A.【點睛】本題考查了旋轉的性質,等邊三角形的性質,全等三角形的判定與性質,垂線段最短的性質,作輔助線構造出全等三角形是解題的關鍵,也是本題的難點.7、D【解析】
解:如圖:利用頂點式及取值范圍,可畫出函數圖象會發現:當x=3時,y=k成立的x值恰好有三個.故選:D.8、A【解析】
設每支百合花x元,每支玫瑰花y元,根據總價=單價×購買數量結合小華一共花的錢比小紅少8元,即可得出關于x、y的二元一次方程,整理后即可得出結論.【詳解】設每支百合花x元,每支玫瑰花y元,根據題意得:8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,∴2支百合花比2支玫瑰花多8元.故選:A.【點睛】考查了二元一次方程的應用,找準等量關系,正確列出二元一次方程是解題的關鍵.9、B【解析】試題分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋轉的性質可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故選B.考點:旋轉的性質.10、B【解析】
根據最簡二次根式必須滿足兩個條件:(1)被開方數不含分母;(2)被開方數不含能開得盡方的因數或因式判斷即可.【詳解】A、=4,不符合題意;B、是最簡二次根式,符合題意;C、=,不符合題意;D、=,不符合題意;故選B.【點睛】本題考查最簡二次根式的定義.最簡二次根式必須滿足兩個條件:(1)被開方數不含分母;(2)被開方數不含能開得盡方的因數或因式.11、C【解析】
根據一次函數的位置確定a、b的大小,看是否符合ab<0,計算a-b確定符號,確定雙曲線的位置.【詳解】A.由一次函數圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數y=的圖象過一、三象限,所以此選項不正確;B.由一次函數圖象過二、四象限,得a<0,交y軸正半軸,則b>0,滿足ab<0,∴a?b<0,∴反比例函數y=的圖象過二、四象限,所以此選項不正確;C.由一次函數圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數y=的圖象過一、三象限,所以此選項正確;D.由一次函數圖象過二、四象限,得a<0,交y軸負半軸,則b<0,滿足ab>0,與已知相矛盾所以此選項不正確;故選C.【點睛】此題考查反比例函數的圖象,一次函數的圖象,解題關鍵在于確定a、b的大小12、D【解析】
設點B的橫坐標為x,然后表示出BC、B′C的橫坐標的距離,再根據位似變換的概念列式計算.【詳解】設點B的橫坐標為x,則B、C間的橫坐標的長度為﹣1﹣x,B′、C間的橫坐標的長度為a+1,∵△ABC放大到原來的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故選:D.【點睛】本題考查了位似變換,坐標與圖形的性質,根據位似變換的定義,利用兩點間的橫坐標的距離等于對應邊的比列出方程是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-1【解析】試題解析:設點A的坐標為(m,n),因為點A在y=的圖象上,所以,有mn=k,△ABO的面積為=1,∴=1,∴=1,∴k=±1,由函數圖象位于第二、四象限知k<0,∴k=-1.考點:反比例外函數k的幾何意義.14、【解析】
先算除法,再算減法,注意把分式的分子分母分解因式【詳解】原式===【點睛】此題考查分式的混合運算,掌握運算法則是解題關鍵15、【解析】分析:根據題意可以列出相應的方程組,從而可以解答本題.詳解:由題意可得,,故答案為點睛:本題考查由實際問題抽象出二元一次方程組,解答本題的關鍵是明確題意,列出相應的方程組.16、x(x-1)2.【解析】由題意得,x3﹣2x2+x=x(x﹣1)217、65°【解析】
根據已知條件中的作圖步驟知,AG是∠CAB的平分線,根據角平分線的性質解答即可.【詳解】根據已知條件中的作圖步驟知,AG是∠CAB的平分線,∵∠CAB=50°,
∴∠CAD=25°;
在△ADC中,∠C=90°,∠CAD=25°,
∴∠ADC=65°(直角三角形中的兩個銳角互余);
故答案是:65°.18、1【解析】分析:對所求代數式根據分式的混合運算順序進行化簡,再把變形后整體代入即可.詳解:故答案為1.點睛:考查分式的混合運算,掌握運算順序是解題的關鍵.注意整體代入法的運用.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、甲建筑物的高AB為(30-30)m,乙建筑物的高DC為30m【解析】
如圖,過A作AF⊥CD于點F,在Rt△BCD中,∠DBC=60°,BC=30m,∵=tan∠DBC,∴CD=BC?tan60°=30m,∴乙建筑物的高度為30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴甲建筑物的高度為(30﹣30)m.20、(1)1;(2);(3)x時,y有最大值,最大值.【解析】
(1)只要證明△OBC是等邊三角形即可;(2)求出△AOC的面積,利用三角形的面積公式計算即可;(3)分三種情形討論求解即可解決問題:①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.②當x≤4時,M在BC上運動,N在OB上運動.③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.【詳解】(1)由旋轉性質可知:OB=OC,∠BOC=1°,∴△OBC是等邊三角形,∴∠OBC=1°.故答案為1.(2)如圖1中.∵OB=4,∠ABO=30°,∴OAOB=2,ABOA=2,∴S△AOC?OA?AB2×2.∵△BOC是等邊三角形,∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,∴AC,∴OP.(3)①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.則NE=ON?sin1°x,∴S△OMN?OM?NE1.5xx,∴yx2,∴x時,y有最大值,最大值.②當x≤4時,M在BC上運動,N在OB上運動.作MH⊥OB于H.則BM=8﹣1.5x,MH=BM?sin1°(8﹣1.5x),∴yON×MHx2+2x.當x時,y取最大值,y,③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y?MN?OG=12x,當x=4時,y有最大值,最大值=2.綜上所述:y有最大值,最大值為.【點睛】本題考查幾何變換綜合題、30度的直角三角形的性質、等邊三角形的判定和性質、三角形的面積等知識,解題的關鍵是學會用分類討論的思想思考問題.21、(1)連接A、B兩市公路的路程為80km,貨車由B市到達A市所需時間為h;(2)y=﹣80x+60(0≤x≤);(3)機場大巴與貨車相遇地到機場C的路程為km.【解析】
(1)根據可求出連接A、B兩市公路的路程,再根據貨車h行駛20km可求出貨車行駛60km所需時間;(2)根據函數圖象上點的坐標,利用待定系數法即可求出機場大巴到機場C的路程y(km)與出發時間x(h)之間的函數關系式;(3)利用待定系數法求出線段ED對應的函數表達式,聯立兩函數表達式成方程組,通過解方程組可求出機場大巴與貨車相遇地到機場C的路程.【詳解】解:(1)60+20=80(km),(h)∴連接A.
B兩市公路的路程為80km,貨車由B市到達A市所需時間為h.(2)設所求函數表達式為y=kx+b(k≠0),將點(0,60)、代入y=kx+b,得:解得:∴機場大巴到機場C的路程y(km)與出發時間x(h)之間的函數關系式為(3)設線段ED對應的函數表達式為y=mx+n(m≠0)將點代入y=mx+n,得:解得:∴線段ED對應的函數表達式為解方程組得∴機場大巴與貨車相遇地到機場C的路程為km.【點睛】本題考查一次函數的應用,掌握待定系數法求函數關系式是解題的關鍵,本題屬于中檔題,難度不大,但過程比較繁瑣,因此再解決該題是一定要細心.22、(1)抽樣調查;12;3;(2)60;(3).【解析】試題分析:(1)根據只抽取了4個班可知是抽樣調查,根據C在扇形圖中的角度求出所占的份數,再根據C的人數是5,列式進行計算即可求出作品的件數,然后減去A、C、D的件數即為B的件數;(2)求出平均每一個班的作品件數,然后乘以班級數14,計算即可得解;(3)畫出樹狀圖或列出圖表,再根據概率公式列式進行計算即可得解.試題解析:(1)抽樣調查,所調查的4個班征集到作品數為:5÷=12件,B作品的件數為:12﹣2﹣5﹣2=3件,故答案為抽樣調查;12;3;把圖2補充完整如下:(2)王老師所調查的四個班平均每個班征集作品=12÷4=3(件),所以,估計全年級征集到參展作品:3×14=42(件);(3)畫樹狀圖如下:列表如下:共有20種機會均等的結果,其中一男一女占12種,所以,P(一男一女)==,即恰好抽中一男一女的概率是.考點:1.條形統計圖;2.用樣本估計總體;3.扇形統計圖;4.列表法與樹狀圖法;5.圖表型.23、(Ⅰ)發射臺與雷達站之間的距離約為;(Ⅱ)這枚火箭從到的平均速度大約是.【解析】
(Ⅰ)在Rt△ACD中,根據銳角三角函數的定義,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的長,利用∠ADC的正弦值求出AC的長,進而可得AB的長,即可得答案.【詳解】(Ⅰ)在中,,≈0.74,∴.答:發射臺與雷達站之間的距離約為.(Ⅱ)在中,,∴.∵在中,,∴.∴.答:這枚火箭從到的平均速度大約是.【點睛】本題考查解直角三角形的應用,熟練掌握銳角三角函數的定義是解題關鍵.24、【解析】
過點C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根據AD+BD=AB列方程求解可得.【詳解】解:過點C作CD⊥AB于點D,設CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵,∴AD====x,由AD+BD=AB可得x+x=10,解得:x=5﹣5,答:飛機飛行的高度為(5﹣5)km.25、(1)BH為10米;(2)宣傳牌CD高約(40﹣20)米【解析】
(1)過B作DE的垂線,設垂足為G.分別在Rt△ABH中,通過解直角三角形求出BH、AH;
(2)在△ADE解直角三角形求出DE的長,進而可求出EH即BG的長,在Rt△CBG中,∠CBG=45°,則CG=BG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論