




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.截至2010年“費爾茲獎”得主中最年輕的8位數學家獲獎時的年齡分別為29,28,29,31,31,31,29,31,則由年齡組成的這組數據的中位數是()A.28 B.29 C.30 D.312.在一個不透明的袋子中裝有除顏色外其余均相同的m個小球,其中5個黑球,從袋中隨機摸出一球,記下其顏色,這稱為依次摸球試驗,之后把它放回袋中,攪勻后,再繼續摸出一球.以下是利用計算機模擬的摸球試驗次數與摸出黑球次數的列表:摸球試驗次數100100050001000050000100000摸出黑球次數46487250650082499650007根據列表,可以估計出m的值是()A.5 B.10 C.15 D.203.已知反比例函數y=﹣,當﹣3<x<﹣2時,y的取值范圍是()A.0<y<1 B.1<y<2 C.2<y<3 D.﹣3<y<﹣24.已知地球上海洋面積約為361000000km2,361000000這個數用科學記數法可表示為()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×1095.已知點A(0,﹣4),B(8,0)和C(a,﹣a),若過點C的圓的圓心是線段AB的中點,則這個圓的半徑的最小值是()A. B. C. D.26.二次函數y=3(x﹣1)2+2,下列說法正確的是()A.圖象的開口向下B.圖象的頂點坐標是(1,2)C.當x>1時,y隨x的增大而減小D.圖象與y軸的交點坐標為(0,2)7.賓館有50間房供游客居住,當每間房每天定價為180元時,賓館會住滿;當每間房每天的定價每增加10元時,就會空閑一間房.如果有游客居住,賓館需對居住的每間房每天支出20元的費用.當房價定為多少元時,賓館當天的利潤為10890元?設房價比定價180元增加x元,則有()A.(x﹣20)(50﹣)=10890 B.x(50﹣)﹣50×20=10890C.(180+x﹣20)(50﹣)=10890 D.(x+180)(50﹣)﹣50×20=108908.不等式3x<2(x+2)的解是()A.x>2 B.x<2 C.x>4 D.x<49.如右圖,⊿ABC內接于⊙O,若∠OAB=28°則∠C的大小為()A.62° B.56° C.60° D.28°10.下列運算正確的是()A.a﹣3a=2a B.(ab2)0=ab2 C.= D.×=911.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的側面積等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm212.如圖,點A、B、C、D在⊙O上,∠AOC=120°,點B是弧AC的中點,則∠D的度數是()A.60° B.35° C.30.5° D.30°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.觀察下列各等式:……根據以上規律可知第11行左起第一個數是__.14.已知圓錐的底面半徑為3cm,側面積為15πcm2,則這個圓錐的側面展開圖的圓心角°.15.我們知道:四邊形具有不穩定性.如圖,在平面直角坐標系xOy中,矩形ABCD的邊AB在x軸上,,,邊AD長為5.現固定邊AB,“推”矩形使點D落在y軸的正半軸上(落點記為),相應地,點C的對應點的坐標為_______.16.將直角邊長為5cm的等腰直角△ABC繞點A逆時針旋轉15°后,得到△AB′C′,則圖中陰影部分的面積是_____cm1.17.一元二次方程x2+mx+3=0的一個根為-1,則另一個根為.18.如圖,二次函數y=ax2+bx+c(a≠0)的圖象與軸相交于點A、B,若其對稱軸為直線x=2,則OB–OA的值為_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現從中任意摸出一個球是紅球的概率為.求口袋中黃球的個數;甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;20.(6分)如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4)(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1;(2)請畫出△ABC關于原點O成中心對稱的圖形△A2B2C2;(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標.21.(6分)在數學實踐活動課上,老師帶領同學們到附近的濕地公園測量園內雕塑的高度.用測角儀在A處測得雕塑頂端點C′的仰角為30°,再往雕塑方向前進4米至B處,測得仰角為45°.問:該雕塑有多高?(測角儀高度忽略不計,結果不取近似值.)22.(8分)如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=BE=2,sin∠ACD=,求四邊形ABCD的面積.23.(8分)已知一次函數y=x+1與拋物線y=x2+bx+c交A(m,9),B(0,1)兩點,點C在拋物線上且橫坐標為1.(1)寫出拋物線的函數表達式;(2)判斷△ABC的形狀,并證明你的結論;(3)平面內是否存在點Q在直線AB、BC、AC距離相等,如果存在,請直接寫出所有符合條件的Q的坐標,如果不存在,說說你的理由.24.(10分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D.過點D作EF⊥AC,垂足為E,且交AB的延長線于點F.求證:EF是⊙O的切線;已知AB=4,AE=1.求BF的長.25.(10分)“端午節”是我國的傳統佳節,民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節前對某居民區市民進行了抽樣調查,并將調查情況繪制成如下兩幅統計圖(尚不完整).請根據以上信息回答:(1)本次參加抽樣調查的居民有多少人?(2)將兩幅不完整的圖補充完整;(3)求扇形統計圖中C所對圓心角的度數;(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.26.(12分)當前,“精準扶貧”工作已進入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學七年級共有四個班,已“建檔立卡”的貧困家庭的學生人數按一、二、三、四班分別記為A1,A2,A3,A4,現對A1,A2,A3,A4統計后,制成如圖所示的統計圖.(1)求七年級已“建檔立卡”的貧困家庭的學生總人數;(2)將條形統計圖補充完整,并求出A1所在扇形的圓心角的度數;(3)現從A1,A2中各選出一人進行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.27.(12分)先化簡,再求值:1+xx2-1
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據中位數的定義即可解答.【詳解】解:把這些數從小到大排列為:28,29,29,29,31,31,31,31,最中間的兩個數的平均數是:=30,則這組數據的中位數是30;故本題答案為:C.【點睛】此題考查了中位數,中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數.2、B【解析】
由概率公式可知摸出黑球的概率為5m,分析表格數據可知摸出黑球次數【詳解】解:分析表格數據可知摸出黑球次數摸球實驗次數的值總是在0.5左右,則由題意可得5故選擇B.【點睛】本題考查了概率公式的應用.3、C【解析】分析:由題意易得當﹣3<x<﹣2時,函數的圖象位于第二象限,且y隨x的增大而增大,再計算出當x=-3和x=-2時對應的函數值,即可作出判斷了.詳解:∵在中,﹣6<0,∴當﹣3<x<﹣2時函數的圖象位于第二象限內,且y隨x的增大而增大,∵當x=﹣3時,y=2,當x=﹣2時,y=3,∴當﹣3<x<﹣2時,2<y<3,故選C.點睛:熟悉“反比例函數的圖象和性質”是正確解答本題的關鍵.4、C【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值大于1時,n是正數;當原數的絕對值小于1時,n是負數.解答:解:將361000000用科學記數法表示為3.61×1.故選C.5、B【解析】
首先求得AB的中點D的坐標,然后求得經過點D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點坐標,再求得交點與D之間的距離即可.【詳解】AB的中點D的坐標是(4,-2),∵C(a,-a)在一次函數y=-x上,∴設過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數解析式是y=x-1.根據題意得:,解得:,則交點的坐標是(3,-3).則這個圓的半徑的最小值是:=.
故選:B【點睛】本題考查了待定系數法求函數的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關鍵.6、B【解析】
由拋物線解析式可求得其開口方向、頂點坐標、最值及增減性,則可判斷四個選項,可求得答案.【詳解】解:A、因為a=3>0,所以開口向上,錯誤;B、頂點坐標是(1,2),正確;C、當x>1時,y隨x增大而增大,錯誤;D、圖象與y軸的交點坐標為(0,5),錯誤;故選:B.【點睛】考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=a(x﹣h)2+k中,對稱軸為x=h,頂點坐標為(h,k).7、C【解析】
設房價比定價180元増加x元,根據利潤=房價的凈利潤×入住的房同數可得.【詳解】解:設房價比定價180元增加x元,根據題意,得(180+x﹣20)(50﹣)=1.故選:C.【點睛】此題考查一元二次方程的應用問題,主要在于找到等量關系求解.8、D【解析】
不等式先展開再移項即可解答.【詳解】解:不等式3x<2(x+2),展開得:3x<2x+4,移項得:3x-2x<4,解之得:x<4.故答案選D.【點睛】本題考查了解一元一次不等式,解題的關鍵是熟練的掌握解一元一次不等式的步驟.9、A【解析】
連接OB.在△OAB中,OA=OB(⊙O的半徑),∴∠OAB=∠OBA(等邊對等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=∠AOB(同弧所對的圓周角是所對的圓心角的一半),∴∠C=62°;故選A10、D【解析】
直接利用合并同類項法則以及二次根式的性質、二次根式乘法、零指數冪的性質分別化簡得出答案.【詳解】解:A、a﹣3a=﹣2a,故此選項錯誤;B、(ab2)0=1,故此選項錯誤;C、故此選項錯誤;D、×=9,正確.故選D.【點睛】此題主要考查了合并同類項以及二次根式的性質、二次根式乘法、零指數冪的性質,正確把握相關性質是解題關鍵.11、B【解析】由三視圖可知這個幾何體是圓錐,高是4cm,底面半徑是3cm,所以母線長是(cm),∴側面積=π×3×5=15π(cm2),故選B.12、D【解析】
根據圓心角、弧、弦的關系定理得到∠AOB=∠AOC,再根據圓周角定理即可解答.【詳解】連接OB,∵點B是弧的中點,∴∠AOB=∠AOC=60°,由圓周角定理得,∠D=∠AOB=30°,故選D.【點睛】此題考查了圓心角、弧、弦的關系定理,解題關鍵在于利用好圓周角定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-1.【解析】
觀察規律即可解題.【詳解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n行=n2,第11行=112=121,又∵左起第一個數比右側的數大一,∴第11行左起第一個數是-1.【點睛】本題是一道規律題,屬于簡單題,認真審題找到規律是解題關鍵.14、1【解析】試題分析:根據圓錐的側面積公式S=πrl得出圓錐的母線長,再結合扇形面積即可求出圓心角的度數.解:∵側面積為15πcm2,∴圓錐側面積公式為:S=πrl=π×3×l=15π,解得:l=5,∴扇形面積為15π=,解得:n=1,∴側面展開圖的圓心角是1度.故答案為1.考點:圓錐的計算.15、【解析】分析:根據勾股定理,可得,根據平行四邊形的性質,可得答案.詳解:由勾股定理得:=,即(0,4).矩形ABCD的邊AB在x軸上,∴四邊形是平行四邊形,A=B,=AB=4-(-3)=7,與的縱坐標相等,∴(7,4),故答案為(7,4).點睛:本題考查了多邊形,利用平行四邊形的性質得出A=B,=AB=4-(-3)=7是解題的關鍵.16、【解析】∵等腰直角△ABC繞點A逆時針旋轉15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴陰影部分的面積=×5×tan30°×5=.17、-1.【解析】
因為一元二次方程的常數項是已知的,可直接利用兩根之積的等式求解.【詳解】∵一元二次方程x2+mx+1=0的一個根為-1,設另一根為x1,由根與系數關系:-1?x1=1,解得x1=-1.故答案為-1.18、4【解析】試題分析:設OB的長度為x,則根據二次函數的對稱性可得:點B的坐標為(x+2,0),點A的坐標為(2-x,0),則OB-OA=x+2-(x-2)=4.點睛:本題主要考查的就是二次函數的性質.如果二次函數與x軸的兩個交點坐標為(,0)和(,0),則函數的對稱軸為直線:x=.在解決二次函數的題目時,我們一定要注意區分點的坐標和線段的長度之間的區別,如果點在x的正半軸,則點的橫坐標就是線段的長度,如果點在x的負半軸,則點的橫坐標的相反數就是線段的長度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1;(2)【解析】
(1)設口袋中黃球的個數為x個,根據從中任意摸出一個球是紅球的概率為和概率公式列出方程,解方程即可求得答案;(2)根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次摸出都是紅球的情況,再利用概率公式即可求得答案;【詳解】解:(1)設口袋中黃球的個數為個,根據題意得:解得:=1經檢驗:=1是原分式方程的解∴口袋中黃球的個數為1個(2)畫樹狀圖得:∵共有12種等可能的結果,兩次摸出都是紅球的有2種情況∴兩次摸出都是紅球的概率為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.20、(1)詳見解析;(2)詳見解析;(3)圖見解析,點P坐標為(2,0).【解析】
(1)根據網格結構找出點A、B、C平移后的對應點的位置,然后順次連接即可;(2))找出點A、B、C關于原點O的對稱點的位置,然后順次連接即可;(3)找出A的對稱點A′,連接BA′,與x軸交點即為P.【詳解】(1)如圖1所示,△A1B1C1,即為所求:(2)如圖2所示,△A2B2C2,即為所求:(3)找出A的對稱點A′(1,﹣1),連接BA′,與x軸交點即為P;如圖3所示,點P即為所求,點P坐標為(2,0).【點睛】本題考查作圖-旋轉變換,平移變換,軸對稱最短問題等知識,得出對應點位置是解題關鍵.21、該雕塑的高度為(2+2)米.【解析】
過點C作CD⊥AB,設CD=x,由∠CBD=45°知BD=CD=x米,根據tanA=列出關于x的方程,解之可得.【詳解】解:如圖,過點C作CD⊥AB,交AB延長線于點D,設CD=x米,∵∠CBD=45°,∠BDC=90°,∴BD=CD=x米,∵∠A=30°,AD=AB+BD=4+x,∴tanA=,即,解得:x=2+2,答:該雕塑的高度為(2+2)米.【點睛】本題主要考查解直角三角形的應用-仰角俯角問題,解題的關鍵是根據題意構建直角三角形,并熟練掌握三角函數的應用.22、(1)證明見解析;(2)S平行四邊形ABCD=3.【解析】試題分析:(1)根據平行四邊形的性質得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根據平行線的判定得出AD∥BC,根據平行四邊形的判定推出即可;(2)證明△ABE是等邊三角形,得出AE=AB=2,由直角三角形的性質求出CE和DE,得出AC的長,即可求出四邊形ABCD的面積.試題解析:(1)∵AB∥CD,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,∵AB∥CD,∴四邊形ABCD是平行四邊形;(2)∵sin∠ACD=,∴∠ACD=60°,∵四邊形ABCD是平行四邊形,∴AB∥CD,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE是等邊三角形,∴AE=AB=2,∵DE⊥AC,∴∠CDE=90°﹣60°=30°,∴CE=CD=1,∴DE=CE=,AC=AE+CE=3,∴S平行四邊形ABCD=2S△ACD=AC?DE=3.23、(1)y=x2﹣7x+1;(2)△ABC為直角三角形.理由見解析;(3)符合條件的Q的坐標為(4,1),(24,1),(0,﹣7),(0,13).【解析】
(1)先利用一次函數解析式得到A(8,9),然后利用待定系數法求拋物線解析式;(2)先利用拋物線解析式確定C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,證明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8,BN=1,從而得到∠ABC=90°,所以△ABC為直角三角形;(3)利用勾股定理計算出AC=10,根據直角三角形內切圓半徑的計算公式得到Rt△ABC的內切圓的半徑=2,設△ABC的內心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,則AI、BI為角平分線,BI⊥y軸,PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,根據角平分線的性質可判斷點P、I、Q、G到直線AB、BC、AC距離相等,由于BI=×2=4,則I(4,1),接著利用待定系數法求出直線AI的解析式為y=2x﹣7,直線AP的解析式為y=﹣x+13,然后分別求出P、Q、G的坐標即可.【詳解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,則A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得,解得,∴拋物線解析式為y=x2﹣7x+1;故答案為y=x2﹣7x+1;(2)△ABC為直角三角形.理由如下:當x=1時,y=x2﹣7x+1=31﹣42+1=﹣5,則C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,∴∠ABC=90°,∴△ABC為直角三角形;(3)∵AB=8,BN=1,∴AC=10,∴Rt△ABC的內切圓的半徑=,設△ABC的內心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,∵I為△ABC的內心,∴AI、BI為角平分線,∴BI⊥y軸,而AI⊥PQ,∴PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,∴點I、P、Q、G為△ABC的內角平分線或外角平分線的交點,它們到直線AB、BC、AC距離相等,BI=×2=4,而BI⊥y軸,∴I(4,1),設直線AI的解析式為y=kx+n,則,解得,∴直線AI的解析式為y=2x﹣7,當x=0時,y=2x﹣7=﹣7,則G(0,﹣7);設直線AP的解析式為y=﹣x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直線AP的解析式為y=﹣x+13,當y=1時,﹣x+13=1,則P(24,1)當x=0時,y=﹣x+13=13,則Q(0,13),綜上所述,符合條件的Q的坐標為(4,1),(24,1),(0,﹣7),(0,13).【點睛】本題考查了二次函數的綜合題:熟練掌握二次函數圖象上點的坐標特征、角平分線的性質和三角形內心的性質;會利用待定系數法求函數解析式;理解坐標與圖形性質是解題的關鍵.24、(1)證明見解析;(2)2.【解析】
(1)作輔助線,根據等腰三角形三線合一得BD=CD,根據三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結論;(2)證明△ODF∽△AEF,列比例式可得結論.【詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 牧場奶牛養殖委托管理與品牌推廣合同
- 高端職業技能培訓基地合作辦學合同
- 新能源產業股權代持風險防范與化解協議
- 智能化住宅小區安防監控系統建設與全面維護協議
- 數據安全事件應急響應責任保證合同
- 節慶活動市場代理補充協議
- 智能電網新能源汽車充電站建設與運維服務協議
- 戶外活動專用臨時舞臺租賃與活動效果評估服務協議
- 購買商品混凝土協議書
- 旅行社與景區旅游基礎設施共建合作協議
- 2024年高考歷史試卷(浙江)(1月)(解析卷)
- (高清版)JTG D50-2017 公路瀝青路面設計規范
- 草籽播撒勞務合同
- GB/T 43657.1-2024工業車輛能效試驗方法第1部分:總則
- 物業秩序部工作計劃與整改措施
- 化糞池應急預案
- 2023年-2024年職業衛生檢測考試題庫及答案
- 2024年全國行業職業技能競賽(電力交易員)備考試題庫大全(濃縮800題)
- 急性ST段抬高型心肌梗死溶栓治療的合理用藥指南
- 《新聞學概論》試題及參考答案
- 個體診所藥房管理制度制度
評論
0/150
提交評論