




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省紅色六校2025屆高考數(shù)學(xué)試題模擬題及解析(浙江卷)考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若為虛數(shù)單位,則復(fù)數(shù),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知集合,集合,則()A. B. C. D.3.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.已知雙曲線的左、右頂點(diǎn)分別為,點(diǎn)是雙曲線上與不重合的動(dòng)點(diǎn),若,則雙曲線的離心率為()A. B. C.4 D.25.已知中,,則()A.1 B. C. D.6.為實(shí)現(xiàn)國(guó)民經(jīng)濟(jì)新“三步走”的發(fā)展戰(zhàn)略目標(biāo),國(guó)家加大了扶貧攻堅(jiān)的力度.某地區(qū)在2015年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開始,全面實(shí)施“精準(zhǔn)扶貧”政策后,扶貧效果明顯提高,其中2019年度實(shí)施的扶貧項(xiàng)目,各項(xiàng)目參加戶數(shù)占比(參加該項(xiàng)目戶數(shù)占2019年貧困戶總數(shù)的比)及該項(xiàng)目的脫貧率見下表:實(shí)施項(xiàng)目種植業(yè)養(yǎng)殖業(yè)工廠就業(yè)服務(wù)業(yè)參加用戶比脫貧率那么年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的()A.倍 B.倍 C.倍 D.倍7.單位正方體ABCD-,黑、白兩螞蟻從點(diǎn)A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個(gè)頂點(diǎn)處,這時(shí)黑、白兩螞蟻的距離是()A.1 B. C. D.08.已知,是橢圓與雙曲線的公共焦點(diǎn),是它們的一個(gè)公共點(diǎn),且,橢圓的離心率為,雙曲線的離心率為,若,則的最小值為()A. B. C.8 D.69.函數(shù)的圖象大致是()A. B.C. D.10.若復(fù)數(shù)z滿足,則()A. B. C. D.11.百年雙中的校訓(xùn)是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運(yùn)動(dòng)會(huì)中有這樣的一個(gè)小游戲.袋子中有大小、形狀完全相同的四個(gè)小球,分別寫有“仁”、“智”、“雅”、“和”四個(gè)字,有放回地從中任意摸出一個(gè)小球,直到“仁”、“智”兩個(gè)字都摸到就停止摸球.小明同學(xué)用隨機(jī)模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機(jī)產(chǎn)生1到4之間(含1和4)取整數(shù)值的隨機(jī)數(shù),分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示摸球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下20組隨機(jī)數(shù):141432341342234142243331112322342241244431233214344142134412由此可以估計(jì),恰好第三次就停止摸球的概率為()A. B. C. D.12.已知函數(shù),若,,,則a,b,c的大小關(guān)系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,半球內(nèi)有一內(nèi)接正四棱錐,該四棱錐的體積為,則該半球的體積為__________.14.設(shè),滿足條件,則的最大值為__________.15.對(duì)定義在上的函數(shù),如果同時(shí)滿足以下兩個(gè)條件:(1)對(duì)任意的總有;(2)當(dāng),,時(shí),總有成立.則稱函數(shù)稱為G函數(shù).若是定義在上G函數(shù),則實(shí)數(shù)a的取值范圍為________.16.某同學(xué)周末通過拋硬幣的方式?jīng)Q定出去看電影還是在家學(xué)習(xí),拋一枚硬幣兩次,若兩次都是正面朝上,就在家學(xué)習(xí),否則出去看電影,則該同學(xué)在家學(xué)習(xí)的概率為____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)在極坐標(biāo)系中,已知曲線,.(1)求曲線、的直角坐標(biāo)方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點(diǎn),求兩交點(diǎn)間的距離.18.(12分)(江蘇省徐州市高三第一次質(zhì)量檢測(cè)數(shù)學(xué)試題)在平面直角坐標(biāo)系中,已知平行于軸的動(dòng)直線交拋物線:于點(diǎn),點(diǎn)為的焦點(diǎn).圓心不在軸上的圓與直線,,軸都相切,設(shè)的軌跡為曲線.(1)求曲線的方程;(2)若直線與曲線相切于點(diǎn),過且垂直于的直線為,直線,分別與軸相交于點(diǎn),.當(dāng)線段的長(zhǎng)度最小時(shí),求的值.19.(12分)在中,,.已知分別是的中點(diǎn).將沿折起,使到的位置且二面角的大小是60°,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.20.(12分)已知函數(shù)()的圖象在處的切線為(為自然對(duì)數(shù)的底數(shù))(1)求的值;(2)若,且對(duì)任意恒成立,求的最大值.21.(12分)已知函數(shù).(1)求證:當(dāng)時(shí),;(2)若對(duì)任意存在和使成立,求實(shí)數(shù)的最小值.22.(10分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點(diǎn),是的中點(diǎn).分別沿,將四邊形和折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).(1)證明:平面.(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
首先根據(jù)特殊角的三角函數(shù)值將復(fù)數(shù)化為,求出,再利用復(fù)數(shù)的幾何意義即可求解.【詳解】,,則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第二象限.故選:B本題考查了復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.2.D【解析】
可求出集合,,然后進(jìn)行并集的運(yùn)算即可.【詳解】解:,;.故選.考查描述法、區(qū)間的定義,對(duì)數(shù)函數(shù)的單調(diào)性,以及并集的運(yùn)算.3.B【解析】
利用充分必要條件的定義可判斷兩個(gè)條件之間的關(guān)系.【詳解】若,則,故或,當(dāng)時(shí),直線,直線,此時(shí)兩條直線平行;當(dāng)時(shí),直線,直線,此時(shí)兩條直線平行.所以當(dāng)時(shí),推不出,故“”是“”的不充分條件,當(dāng)時(shí),可以推出,故“”是“”的必要條件,故選:B.本題考查兩條直線的位置關(guān)系以及必要不充分條件的判斷,前者應(yīng)根據(jù)系數(shù)關(guān)系來(lái)考慮,后者依據(jù)兩個(gè)條件之間的推出關(guān)系,本題屬于中檔題.4.D【解析】
設(shè),,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡(jiǎn)可得,即可求出離心率.【詳解】解:設(shè),,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.本題考查雙曲線的方程和性質(zhì),考查了斜率的計(jì)算,離心率的求法,屬于基礎(chǔ)題和易錯(cuò)題.5.C【解析】
以為基底,將用基底表示,根據(jù)向量數(shù)量積的運(yùn)算律,即可求解.【詳解】,,.故選:C.本題考查向量的線性運(yùn)算以及向量的基本定理,考查向量數(shù)量積運(yùn)算,屬于中檔題.6.B【解析】
設(shè)貧困戶總數(shù)為,利用表中數(shù)據(jù)可得脫貧率,進(jìn)而可求解.【詳解】設(shè)貧困戶總數(shù)為,脫貧率,所以.故年的年脫貧率是實(shí)施“精準(zhǔn)扶貧”政策前的年均脫貧率的倍.故選:B本題考查了概率與統(tǒng)計(jì),考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.7.B【解析】
根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過幾段后又回到起點(diǎn),得到每爬1步回到起點(diǎn),周期為1.計(jì)算黑螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn)以及計(jì)算白螞蟻爬完2020段后實(shí)質(zhì)是到達(dá)哪個(gè)點(diǎn),即可計(jì)算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點(diǎn),可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點(diǎn);同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點(diǎn),所以它們此時(shí)的距離為.故選B.本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.8.C【解析】
由橢圓的定義以及雙曲線的定義、離心率公式化簡(jiǎn),結(jié)合基本不等式即可求解.【詳解】設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為,雙曲線的半實(shí)軸長(zhǎng)為,半焦距為,則,,設(shè)由橢圓的定義以及雙曲線的定義可得:,則當(dāng)且僅當(dāng)時(shí),取等號(hào).故選:C.本題主要考查了橢圓的定義以及雙曲線的定義、離心率公式,屬于中等題.9.C【解析】
根據(jù)函數(shù)奇偶性可排除AB選項(xiàng);結(jié)合特殊值,即可排除D選項(xiàng).【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項(xiàng)A,B;又∵當(dāng)時(shí),,故選:C.本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.10.D【解析】
先化簡(jiǎn)得再求得解.【詳解】所以.故選:D本題主要考查復(fù)數(shù)的運(yùn)算和模的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.11.A【解析】
由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數(shù)比20即可得解.【詳解】由題意可知當(dāng)1,2同時(shí)出現(xiàn)時(shí)即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.本題考查了簡(jiǎn)單隨機(jī)抽樣中隨機(jī)數(shù)的應(yīng)用和古典概型概率的計(jì)算,屬于基礎(chǔ)題.12.D【解析】
根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),由函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系分析可得在上為增函數(shù),又由,分析可得答案.【詳解】解:根據(jù)題意,函數(shù),其導(dǎo)數(shù)函數(shù),則有在上恒成立,則在上為增函數(shù);又由,則;故選:.本題考查函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,涉及函數(shù)單調(diào)性的性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關(guān)系,進(jìn)而可寫出半球的半徑與四棱錐體積的關(guān)系,進(jìn)而求得結(jié)果.【詳解】設(shè)所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點(diǎn)睛】涉及球與棱柱、棱錐的切、接問題時(shí),一般過球心及多面體中的特殊點(diǎn)(一般為接、切點(diǎn))或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識(shí)尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.14.【解析】
作出可行域,由得,平移直線,數(shù)形結(jié)合可求的最大值.【詳解】作出可行域如圖所示由得,則是直線在軸上的截距.平移直線,當(dāng)直線經(jīng)過可行域內(nèi)的點(diǎn)時(shí),最小,此時(shí)最大.解方程組,得,..故答案為:.本題考查簡(jiǎn)單的線性規(guī)劃,屬于基礎(chǔ)題.15.【解析】
由不等式恒成立問題采用分離變量最值法:對(duì)任意的恒成立,解得,又在,恒成立,即,所以,從而可得.【詳解】因?yàn)槭嵌x在上G函數(shù),所以對(duì)任意的總有,則對(duì)任意的恒成立,解得,當(dāng)時(shí),又因?yàn)?,,時(shí),總有成立,即恒成立,即恒成立,又此時(shí)的最小值為,即恒成立,又因?yàn)榻獾?故答案為:本題是一道函數(shù)新定義題目,考查了不等式恒成立求參數(shù)的取值范圍,考查了學(xué)生分析理解能力,屬于中檔題.16.【解析】
采用列舉法計(jì)算古典概型的概率.【詳解】拋擲一枚硬幣兩次共有4種情況,即(正,正),(正,反),(反,正),(反,反),在家學(xué)習(xí)只有1種情況,即(正,正),故該同學(xué)在家學(xué)習(xí)的概率為.故答案為:本題考查古典概型的概率計(jì)算,考查學(xué)生的基本計(jì)算能力,是一道基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(1)表示一條直線,是圓心為,半徑為的圓;(2).【解析】
(1)直接利用極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)換關(guān)系可將曲線的方程化為直角坐標(biāo)方程,進(jìn)而可判斷出曲線的形狀,在曲線的方程兩邊同時(shí)乘以得,由可將曲線的方程化為直角坐標(biāo)方程,由此可判斷出曲線的形狀;(2)由直線過圓的圓心,可得出為圓的一條直徑,進(jìn)而可得出.【詳解】(1),則曲線的普通方程為,曲線表示一條直線;由,得,則曲線的直角坐標(biāo)方程為,即.所以,曲線是圓心為,半徑為的圓;(2)由(1)知,點(diǎn)在直線上,直線過圓的圓心.因此,是圓的直徑,.本題考查曲線的極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)化,同時(shí)也考查了直線截圓所得弦長(zhǎng)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.18.(1).(2)見解析.【解析】試題分析:(1)設(shè)根據(jù)題意得到,化簡(jiǎn)得到軌跡方程;(2)設(shè),,,,構(gòu)造函數(shù)研究函數(shù)的單調(diào)性,得到函數(shù)的最值.解析:(1)因?yàn)閽佄锞€的方程為,所以的坐標(biāo)為,設(shè),因?yàn)閳A與軸、直線都相切,平行于軸,所以圓的半徑為,點(diǎn),則直線的方程為,即,所以,又,所以,即,所以的方程為.(2)設(shè),,,由(1)知,點(diǎn)處的切線的斜率存在,由對(duì)稱性不妨設(shè),由,所以,,所以,,所以.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時(shí),取得極小值也是最小值,即取得最小值,此時(shí).點(diǎn)睛:求軌跡方程,一般是問誰(shuí)設(shè)誰(shuí)的坐標(biāo)然后根據(jù)題目等式直接求解即可,而對(duì)于直線與曲線的綜合問題要先分析題意轉(zhuǎn)化為等式,例如,可以轉(zhuǎn)化為向量坐標(biāo)進(jìn)行運(yùn)算也可以轉(zhuǎn)化為斜率來(lái)理解,然后借助韋達(dá)定理求解即可運(yùn)算此類題計(jì)算一定要仔細(xì).19.(1)證明見解析(2)45°【解析】
(1)設(shè)的中點(diǎn)為,連接,設(shè)的中點(diǎn)為,連接,,從而即為二面角的平面角,,推導(dǎo)出,從而平面,則,即,進(jìn)而平面,推導(dǎo)四邊形為平行四邊形,從而,平面,由此即可得證.(2)以B為原點(diǎn),在平面中過B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標(biāo)系,利用向量法求出平面與平面所成二面角的大小.【詳解】(1)∵是的中點(diǎn),∴.設(shè)的中點(diǎn)為,連接.設(shè)的中點(diǎn)為,連接,.易證:,,∴即為二面角的平面角.∴,而為的中點(diǎn).易知,∴為等邊三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分別為的中點(diǎn).∴四邊形為平行四邊形.∴,平面,又平面.∴平面平面.(2)如圖,建立空間直角坐標(biāo)系,設(shè).則,,,,顯然平面的法向量,設(shè)平面的法向量為,,,∴,∴.,由圖形觀察可知,平面與平面所成的二面角的平面角為銳角.∴平面與平面所成的二面角大小為45°.本題主要考查立體幾何中面面垂直的證明以及求解二面角大小,難度一般,通??刹捎脦缀畏椒ê拖蛄糠椒▋煞N進(jìn)行求解.20.(1)a=-1,b=1;(2)-1.【解析】(1)對(duì)求導(dǎo)得,根據(jù)函數(shù)的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據(jù)對(duì)任意恒成立,等價(jià)于對(duì)任意恒成立,構(gòu)造,求出的單調(diào)性,由,,,,可得存在唯一的零點(diǎn),使得,利用單調(diào)性可求出,即可求出的最大值.(1),.由題意知.(2)由(1)知:,∴對(duì)任意恒成立對(duì)任意恒成立對(duì)任意恒成立.令,則.由于,所以在上單調(diào)遞增.又,,,,所以存在唯一的,使得,且當(dāng)時(shí),,時(shí),.即在單調(diào)遞減,在上單調(diào)遞增.所以.又,即,∴.∴.∵,∴.又因?yàn)閷?duì)任意恒成立,又,∴.點(diǎn)睛:利用導(dǎo)數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.21.(1)見解析;(2)【解析】
(1)不等式等價(jià)于,設(shè),利用導(dǎo)數(shù)可證恒成立,從而原不等式成立.(2)由題設(shè)條件可
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 生命的美麗中考語(yǔ)文作文
- 監(jiān)理工程師職業(yè)心理健康考核試卷
- 安全教育在危機(jī)管理中的價(jià)值與應(yīng)用考核試卷
- 體育用品行業(yè)綠色包裝與可持續(xù)發(fā)展考核試卷
- 畜牧獸醫(yī)技術(shù)考核試卷
- 上海高三語(yǔ)文作文素材
- 幕墻施工中的安全操作規(guī)程考核試卷
- 浙江省湖州市長(zhǎng)興縣南太湖聯(lián)盟2024?2025學(xué)年高一下學(xué)期3月聯(lián)考 數(shù)學(xué)試題(含解析)
- 5-6MSI同步計(jì)數(shù)器1-74161基本概念
- 1-3數(shù)制-非十進(jìn)制和十進(jìn)制
- 米、面制品安全生產(chǎn)與管理考核試卷
- 資金過橋合同協(xié)議
- 2024年山東青島職業(yè)技術(shù)學(xué)院招聘筆試真題
- 2025-2030國(guó)內(nèi)智能玩具行業(yè)市場(chǎng)發(fā)展現(xiàn)狀及競(jìng)爭(zhēng)策略與投資發(fā)展研究報(bào)告
- 倉(cāng)庫(kù)操作規(guī)程試題及答案
- 2025履約類保函擔(dān)保合同范本
- 2025年03月河北邯鄲武安市事業(yè)單位春季博碩人才引進(jìn)55名筆試歷年典型考題(歷年真題考點(diǎn))解題思路附帶答案詳解
- 水土保持監(jiān)測(cè)技術(shù)規(guī)范解讀與應(yīng)用
- 2024年記者證考試時(shí)事新聞處理試題及答案
- 《運(yùn)動(dòng)處方》課件-老年人運(yùn)動(dòng)處方
- 項(xiàng)目管理流程與操作手冊(cè)
評(píng)論
0/150
提交評(píng)論